These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19926537)

  • 1. From fundamentals to microbial power plants: electrochemically active biofilms.
    Bergel A; Feron D; Flemming HC
    Bioelectrochemistry; 2010 Apr; 78(1):1. PubMed ID: 19926537
    [No Abstract]   [Full Text] [Related]  

  • 2. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY; Buret F; Vogel TM; Monier JM
    Bioelectrochemistry; 2010 Apr; 78(1):2-7. PubMed ID: 19783225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From fundamentals to microbial power plants: electrochemically active biofilms. Proceedings of a workshop. November 19-21, 2008. Dourdan, France.
    Bioelectrochemistry; 2010 Apr; 78(1):1-95. PubMed ID: 20545048
    [No Abstract]   [Full Text] [Related]  

  • 4. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance.
    Picioreanu C; van Loosdrecht MC; Curtis TP; Scott K
    Bioelectrochemistry; 2010 Apr; 78(1):8-24. PubMed ID: 19523880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.
    Aelterman P; Rabaey K; The Pham H; Boon N; Verstraete W
    Commun Agric Appl Biol Sci; 2006; 71(1):63-6. PubMed ID: 17191475
    [No Abstract]   [Full Text] [Related]  

  • 7. Marine aerobic biofilm as biocathode catalyst.
    Erable B; Vandecandelaere I; Faimali M; Delia ML; Etcheverry L; Vandamme P; Bergel A
    Bioelectrochemistry; 2010 Apr; 78(1):51-6. PubMed ID: 19643681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.
    Rivalland C; Madhkour S; Salvin P; Robert F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost.
    Parot S; Nercessian O; Delia ML; Achouak W; Bergel A
    J Appl Microbiol; 2009 Apr; 106(4):1350-9. PubMed ID: 19228259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential application of Candida melibiosica in biofuel cells.
    Hubenova Y; Mitov M
    Bioelectrochemistry; 2010 Apr; 78(1):57-61. PubMed ID: 19656743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioanode performance in bioelectrochemical systems: recent improvements and prospects.
    Pham TH; Aelterman P; Verstraete W
    Trends Biotechnol; 2009 Mar; 27(3):168-78. PubMed ID: 19187991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.
    Stein NE; Hamelers HV; Buisman CN
    Bioelectrochemistry; 2010 Apr; 78(1):87-91. PubMed ID: 19896420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.
    You SJ; Ren NQ; Zhao QL; Kiely PD; Wang JY; Yang FL; Fu L; Peng L
    Biosens Bioelectron; 2009 Aug; 24(12):3698-701. PubMed ID: 19502045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forming electrochemically active biofilms from garden compost under chronoamperometry.
    Parot S; Délia ML; Bergel A
    Bioresour Technol; 2008 Jul; 99(11):4809-16. PubMed ID: 17988862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.
    Yi H; Nevin KP; Kim BC; Franks AE; Klimes A; Tender LM; Lovley DR
    Biosens Bioelectron; 2009 Aug; 24(12):3498-503. PubMed ID: 19487117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.