These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19926859)

  • 21. Ion selectivity of the anthrax toxin channel and its effect on protein translocation.
    Schiffmiller A; Anderson D; Finkelstein A
    J Gen Physiol; 2015 Aug; 146(2):183-92. PubMed ID: 26170174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins.
    Basilio D; Jennings-Antipov LD; Jakes KS; Finkelstein A
    J Gen Physiol; 2011 Apr; 137(4):343-56. PubMed ID: 21402886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.
    Krantz BA; Finkelstein A; Collier RJ
    J Mol Biol; 2006 Feb; 355(5):968-79. PubMed ID: 16343527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that translocation of anthrax toxin's lethal factor is initiated by entry of its N terminus into the protective antigen channel.
    Zhang S; Finkelstein A; Collier RJ
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16756-61. PubMed ID: 15548616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion conductance of the stem of the anthrax toxin channel during lethal factor translocation.
    Schiffmiller A; Finkelstein A
    J Mol Biol; 2015 Mar; 427(6 Pt A):1211-23. PubMed ID: 24996036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of introducing a single charged residue into the phenylalanine clamp of multimeric anthrax protective antigen.
    Janowiak BE; Fischer A; Collier RJ
    J Biol Chem; 2010 Mar; 285(11):8130-7. PubMed ID: 20061382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein translocation through anthrax toxin channels formed in planar lipid bilayers.
    Zhang S; Udho E; Wu Z; Collier RJ; Finkelstein A
    Biophys J; 2004 Dec; 87(6):3842-9. PubMed ID: 15377524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex.
    Yamada T; Yoshida T; Kawamoto A; Mitsuoka K; Iwasaki K; Tsuge H
    Nat Struct Mol Biol; 2020 Mar; 27(3):288-296. PubMed ID: 32123390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Phenylalanine Clamp Interactions Define Single-Channel Polypeptide Translocation through the Anthrax Toxin Protective Antigen Channel.
    Ghosal K; Colby JM; Das D; Joy ST; Arora PS; Krantz BA
    J Mol Biol; 2017 Mar; 429(6):900-910. PubMed ID: 28192089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin.
    Krantz BA; Trivedi AD; Cunningham K; Christensen KA; Collier RJ
    J Mol Biol; 2004 Nov; 344(3):739-56. PubMed ID: 15533442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbiology. Translocation of anthrax toxin: lord of the rings.
    von Heijne G
    Science; 2005 Jul; 309(5735):709-10. PubMed ID: 16051774
    [No Abstract]   [Full Text] [Related]  

  • 32. Polylysine-mediated translocation of the diphtheria toxin catalytic domain through the anthrax protective antigen pore.
    Sharma O; Collier RJ
    Biochemistry; 2014 Nov; 53(44):6934-40. PubMed ID: 25317832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomic Structures of Anthrax Prechannel Bound with Full-Length Lethal and Edema Factors.
    Zhou K; Liu S; Hardenbrook NJ; Cui Y; Krantz BA; Zhou ZH
    Structure; 2020 Aug; 28(8):879-887.e3. PubMed ID: 32521227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor.
    Pentelute BL; Barker AP; Janowiak BE; Kent SB; Collier RJ
    ACS Chem Biol; 2010 Apr; 5(4):359-64. PubMed ID: 20180595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function.
    Sun J; Collier RJ
    PLoS One; 2010 May; 5(5):e10553. PubMed ID: 20479891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state.
    Antoni C; Quentin D; Lang AE; Aktories K; Gatsogiannis C; Raunser S
    PLoS Pathog; 2020 Aug; 16(8):e1008530. PubMed ID: 32810181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 2-fluorohistidine labeling of the anthrax protective antigen on stability, pore formation, and translocation.
    Wimalasena DS; Cramer JC; Janowiak BE; Juris SJ; Melnyk RA; Anderson DE; Kirk KL; Collier RJ; Bann JG
    Biochemistry; 2007 Dec; 46(51):14928-36. PubMed ID: 18044973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preventing voltage-dependent gating of anthrax toxin channels using engineered disulfides.
    Anderson DS; Blaustein RO
    J Gen Physiol; 2008 Sep; 132(3):351-60. PubMed ID: 18725530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid induced unfolding of anthrax protective antigen.
    Gupta PK; Kurupati RK; Chandra H; Gaur R; Tandon V; Singh Y; Maithal K
    Biochem Biophys Res Commun; 2003 Nov; 311(1):229-32. PubMed ID: 14575718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation.
    London E
    Mol Microbiol; 1992 Nov; 6(22):3277-82. PubMed ID: 1484483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.