BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19927)

  • 1. Studies on fish liver protein synthesis. II. Factors influencing the aminoacylation of shark liver transfer ribonucleic acid.
    Araya A; Krauskopf M
    Acta Physiol Lat Am; 1976; 26(2):97-105. PubMed ID: 19927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valyl-transfer RNA formation stimulated by monovalent cations and spermine in rat liver.
    Romano M; Lombardi ML
    Ital J Biochem; 1976; 25(3):245-50. PubMed ID: 955857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on fish liver protein synthesis. I. Isolation and characterization of shark liver transfer ribonucleic acid.
    Krauskopf M; Araya A; Litvak S
    Comp Biochem Physiol B; 1974 Aug; 48(4):619-28. PubMed ID: 4367139
    [No Abstract]   [Full Text] [Related]  

  • 5. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations.
    Ryckelynck M; Giegé R; Frugier M
    Biochimie; 2005; 87(9-10):835-45. PubMed ID: 15925436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [tRNA and aminoacyl-tRNA synthetases from the liver of rabbits in experimental myocardial infarction].
    Lukoshiavichius LIu; Rodovichius GA; Kovalenko MM; Pivoriunaĭte II; Prashkiavichius AK
    Vopr Med Khim; 1983; 29(4):65-9. PubMed ID: 6623997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacylation of rat liver transfer RNA with homologous and heterologous enzyme systems during aging.
    Vinayak M
    Biochem Int; 1986 Mar; 12(3):479-84. PubMed ID: 3635385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of ethanol on the initial stage of protein biosynthesis in the rat liver].
    Sushkova VV; Kas'ianova NN; Vasil'eva SM; Gulyĭ MV
    Vopr Med Khim; 1988; 34(4):21-4. PubMed ID: 3195128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biological activity of tRNA and aminoacyl-tRNA-synthetases from the swine myocardium in anoxia and subsequent reoxygenation].
    Kashauskas AP; Tamuliavichius AA; Lukoshiavichius LIu; Ivanov LL; Prashkiavichius AK
    Vopr Med Khim; 1988; 34(2):84-6. PubMed ID: 3400198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rules that govern tRNA identity in protein synthesis.
    McClain WH
    J Mol Biol; 1993 Nov; 234(2):257-80. PubMed ID: 8230212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of the bonding of amino acid by tRNA of livers of rats experimentally exposed to cadmium and barium.
    Pasternak K
    Ann Univ Mariae Curie Sklodowska Med; 1997; 52():161-5. PubMed ID: 10023173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein synthesis and aging: studies with cell-free mammalian systems.
    Moldave K; Harris J; Sabo W; Sadnik I
    Fed Proc; 1979 May; 38(6):1979-83. PubMed ID: 437141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization.
    Sissler M; Lorber B; Messmer M; Schaller A; Pütz J; Florentz C
    Methods; 2008 Feb; 44(2):176-89. PubMed ID: 18241799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The complement of cytoplasmic tRNAs, including queuosine-containing tRNAs, in adult and senescent Wistar rat liver and their levels of aminoacylation.
    Cook JR; Buetow DE
    Mech Ageing Dev; 1982 Dec; 20(4):289-304. PubMed ID: 6820101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of the aminoacylation of transfer ribonucleic acid: enzyme-product dissociation is not rate limiting.
    Lövgren TN; Pastuszyn A; Loftfield RB
    Biochemistry; 1976 Jun; 15(12):2533-40. PubMed ID: 779825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacyl-tRNA synthetases from calf liver: optimized assay conditions and kinetic properties.
    Choo AH; Logam DM
    Mol Cell Biochem; 1977 Aug; 17(1):31-8. PubMed ID: 20569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionally impaired tRNA from ethionine treated rats as detected in injected Xenopus oocytes.
    Ginzburg I; Cornelis P; Giveon D; Littauer UZ
    Nucleic Acids Res; 1979 Feb; 6(2):657-72. PubMed ID: 254045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the hydrolysis patterns of several tRNAs by cobra venom ribonuclease in different steps of the aminoacylation reaction.
    Butorin AS; Remy P; Ebel JP; Vassilenko SK
    Eur J Biochem; 1982 Jan; 121(3):587-95. PubMed ID: 6915854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.