BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 19927097)

  • 1. Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting.
    Stavridis SI; Dehghani F; Korf HW; Hailer NP
    Spine (Phila Pa 1976); 2009 Nov; 34(23):2494-9. PubMed ID: 19927097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats.
    Hagg T; Baker KA; Emsley JG; Tetzlaff W
    Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.
    Kamei N; Tanaka N; Oishi Y; Hamasaki T; Nakanishi K; Sakai N; Ochi M
    Spine (Phila Pa 1976); 2007 May; 32(12):1272-8. PubMed ID: 17515814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey.
    Freund P; Wannier T; Schmidlin E; Bloch J; Mir A; Schwab ME; Rouiller EM
    J Comp Neurol; 2007 Jun; 502(4):644-59. PubMed ID: 17394135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
    Kuang RZ; Kalil K
    J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of corticospinal tract regeneration in the chronically injured spinal cord.
    Ferguson IA; Koide T; Rush RA
    Eur J Neurosci; 2001 Mar; 13(5):1059-64. PubMed ID: 11264681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant.
    Hiebert GW; Khodarahmi K; McGraw J; Steeves JD; Tetzlaff W
    J Neurosci Res; 2002 Jul; 69(2):160-8. PubMed ID: 12111797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFGF promotes axonal growth in rat spinal cord organotypic slice co-cultures.
    Lee YS; Baratta J; Yu J; Lin VW; Robertson RT
    J Neurotrauma; 2002 Mar; 19(3):357-67. PubMed ID: 11939503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment.
    Zhang Y; Xiong Y; Mahmood A; Meng Y; Liu Z; Qu C; Chopp M
    Brain Res; 2010 Sep; 1353():249-57. PubMed ID: 20654589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord transection in adult rats: effects of local infusion of nerve growth factor on the corticospinal tract axons.
    Fernandez E; Pallini R; Lauretti L; Mercanti D; Serra A; Calissano P
    Neurosurgery; 1993 Nov; 33(5):889-93. PubMed ID: 7505409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord.
    Bradbury EJ; Khemani S; Von R; King ; Priestley JV; McMahon SB
    Eur J Neurosci; 1999 Nov; 11(11):3873-83. PubMed ID: 10583476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex.
    Wills TE; Batchelor PE; Kerr NF; Sidon K; Katz M; Loy C; Howells DW
    Neurol Res; 2013 Sep; 35(7):763-72. PubMed ID: 23582158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying Axonal Outgrowth and Regeneration of the Corticospinal Tract in Organotypic Slice Cultures.
    Pohland M; Glumm R; Stoenica L; Höltje M; Kiwit J; Ahnert-Hilger G; Strauss U; Bräuer AU; Paul F; Glumm J
    J Neurotrauma; 2015 Oct; 32(19):1465-77. PubMed ID: 25923828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord.
    Sayer FT; Oudega M; Hagg T
    Exp Neurol; 2002 May; 175(1):282-96. PubMed ID: 12009779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.