These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 19927311)
1. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen. Sato E; Matsumoto A Chem Rec; 2009; 9(5):247-57. PubMed ID: 19927311 [TBL] [Abstract][Full Text] [Related]
2. Cohesive force change induced by polyperoxide degradation for application to dismantlable adhesion. Sato E; Tamura H; Matsumoto A ACS Appl Mater Interfaces; 2010 Sep; 2(9):2594-601. PubMed ID: 20712326 [TBL] [Abstract][Full Text] [Related]
3. Regiospecific radical polymerization of a tetrasubstituted ethylene monomer with molecular oxygen for the synthesis of a new degradable polymer. Matsumoto A; Taketani S J Am Chem Soc; 2006 Apr; 128(14):4566-7. PubMed ID: 16594681 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation and in vitro biocompatibility of polyperoxides: alternating co-polymers of vinyl monomers and molecular oxygen. Pal S; Das A; Maiti S; De P J Biomater Sci Polym Ed; 2012; 23(16):2105-17. PubMed ID: 22152546 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of main-chain degradable block copolymers for performance enhanced dismantlable adhesion. Sato E; Hagihara T; Matsumoto A ACS Appl Mater Interfaces; 2012 Apr; 4(4):2057-64. PubMed ID: 22428724 [TBL] [Abstract][Full Text] [Related]
6. Self-assembly and cellular uptake of degradable and water-soluble polyperoxides. Fujioka T; Taketani S; Nagasaki T; Matsumoto A Bioconjug Chem; 2009 Oct; 20(10):1879-87. PubMed ID: 19775104 [TBL] [Abstract][Full Text] [Related]
7. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of cyclic acetal based degradable hydrogels. Kaihara S; Matsumura S; Fisher JP Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640 [TBL] [Abstract][Full Text] [Related]
9. Recent developments in biodegradable synthetic polymers. Gunatillake P; Mayadunne R; Adhikari R Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterization, properties, and drug release of poly(alkyl methacrylate-b-isobutylene-b-alkyl methacrylate). Cho JC; Cheng G; Feng D; Faust R; Richard R; Schwarz M; Chan K; Boden M Biomacromolecules; 2006 Nov; 7(11):2997-3007. PubMed ID: 17096524 [TBL] [Abstract][Full Text] [Related]
12. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Mizutani M; Palermo EF; Thoma LM; Satoh K; Kamigaito M; Kuroda K Biomacromolecules; 2012 May; 13(5):1554-63. PubMed ID: 22497522 [TBL] [Abstract][Full Text] [Related]
13. Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Tai H; Wang W; Vermonden T; Heath F; Hennink WE; Alexander C; Shakesheff KM; Howdle SM Biomacromolecules; 2009 Apr; 10(4):822-8. PubMed ID: 19226106 [TBL] [Abstract][Full Text] [Related]
14. Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Tai H; Popov VK; Shakesheff KM; Howdle SM Biochem Soc Trans; 2007 Jun; 35(Pt 3):516-21. PubMed ID: 17511642 [TBL] [Abstract][Full Text] [Related]
15. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
16. From natural products to polymeric derivatives of "eugenol": a new approach for preparation of dental composites and orthopedic bone cements. Rojo L; Vazquez B; Parra J; López Bravo A; Deb S; San Roman J Biomacromolecules; 2006 Oct; 7(10):2751-61. PubMed ID: 17025349 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels. Mequanint K; Patel A; Bezuidenhout D Biomacromolecules; 2006 Mar; 7(3):883-91. PubMed ID: 16529427 [TBL] [Abstract][Full Text] [Related]
18. Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Paramonov SE; Bachelder EM; Beaudette TT; Standley SM; Lee CC; Dashe J; Fréchet JM Bioconjug Chem; 2008 Apr; 19(4):911-9. PubMed ID: 18373356 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels. Goraltchouk A; Freier T; Shoichet MS Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Madsen J; Armes SP; Bertal K; Lomas H; Macneil S; Lewis AL Biomacromolecules; 2008 Aug; 9(8):2265-75. PubMed ID: 18598077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]