These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 19927370)

  • 1. Microscale and nanoscale surface strain mapping of single asperity wear in ultra high molecular weight polyethylene: Effects of materials, load, and asperity geometry.
    Wernlé JD; Gilbert JL
    J Biomed Mater Res A; 2010 Jun; 93(4):1442-53. PubMed ID: 19927370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface micromechanics of ultrahigh molecular weight polyethylene: Microindentation testing, crosslinking, and material behavior.
    Gilbert JL; Cumber J; Butterfield A
    J Biomed Mater Res; 2002 Aug; 61(2):270-81. PubMed ID: 12007208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate effects on the microindentation-based mechanical properties of oxidized, crosslinked, and highly crystalline ultrahigh-molecular-weight polyethylene.
    Gilbert JL; Merkhan I
    J Biomed Mater Res A; 2004 Dec; 71(3):549-58. PubMed ID: 15484205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene.
    Turell MB; Bellare A
    Biomaterials; 2004 Aug; 25(17):3389-98. PubMed ID: 15020111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.
    Kanaga Karuppiah KS; Bruck AL; Sundararajan S; Wang J; Lin Z; Xu ZH; Li X
    Acta Biomater; 2008 Sep; 4(5):1401-10. PubMed ID: 18378200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles.
    Ingram JH; Stone M; Fisher J; Ingham E
    Biomaterials; 2004 Aug; 25(17):3511-22. PubMed ID: 15020125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the wear and debris generation of GUR 1120 (compression moulded) and GUR 4150HP (ram extruded) ultra high molecular weight polyethylene.
    Endo MM; Barbour PS; Barton DC; Wroblewski BM; Fisher J; Tipper JL; Ingham E; Stone MH
    Biomed Mater Eng; 1999; 9(2):113-24. PubMed ID: 10524294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene.
    Endo MM; Barbour PS; Barton DC; Fisher J; Tipper JL; Ingham E; Stone MH
    Biomed Mater Eng; 2001; 11(1):23-35. PubMed ID: 11281576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lipid absorption on wear and compressive properties of unirradiated and highly crosslinked UHMWPE: an in vitro experimental model.
    Greenbaum ES; Burroughs BB; Harris WH; Muratoglu OK
    Biomaterials; 2004 Aug; 25(18):4479-84. PubMed ID: 15046938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effect of surface roughness on the micro/nanotribological behavior of ultra-high-molecular-weight polyethylene (UHMWPE) in air and bovine serum solution.
    Check J; Karuppiah KS; Sundararajan S
    J Biomed Mater Res A; 2005 Sep; 74(4):687-95. PubMed ID: 16028238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions.
    Affatato S; Bersaglia G; Rocchi M; Taddei P; Fagnano C; Toni A
    Biomaterials; 2005 Jun; 26(16):3259-67. PubMed ID: 15603821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength.
    Oral E; Ghali BW; Rowell SL; Micheli BR; Lozynsky AJ; Muratoglu OK
    Biomaterials; 2010 Sep; 31(27):7051-60. PubMed ID: 20579730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. Recipient of the 1999 HAP Paul Award.
    Muratoglu OK; Bragdon CR; O'Connor DO; Jasty M; Harris WH
    J Arthroplasty; 2001 Feb; 16(2):149-60. PubMed ID: 11222887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator.
    McKellop HA; Shen FW; Campbell P; Ota T
    J Orthop Res; 1999 May; 17(3):329-39. PubMed ID: 10376720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel ultra high molecular weight polyethylene-hyaluronan microcomposite for use in total joint replacements. II. Mechanical and tribological property evaluation.
    Zhang M; Pare P; King R; James SP
    J Biomed Mater Res A; 2007 Jul; 82(1):18-26. PubMed ID: 17265440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene.
    Abdelgaied A; Brockett CL; Liu F; Jennings LM; Fisher J; Jin Z
    Proc Inst Mech Eng H; 2013 Jan; 227(1):18-26. PubMed ID: 23516952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.
    Kane SR; Ashby PD; Pruitt LA
    J Biomed Mater Res A; 2010 Mar; 92(4):1500-9. PubMed ID: 19425047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An observation on subsurface defects of ultra high molecular weight polyethylene due to rolling contact.
    Ohashi M; Tomita N; Ikada Y; Ikeuchi K; Motoike T
    Biomed Mater Eng; 1996; 6(6):441-51. PubMed ID: 9138654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of plastic strains in ultra-high molecular weight polyethylene due to microscopic asperity interactions during sliding wear.
    McNie C; Barton DC; Stone MH; Fisher J
    Proc Inst Mech Eng H; 1998; 212(1):49-56. PubMed ID: 9529936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.