BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 19927749)

  • 21. Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina.
    Alvarez CL; Somma S; Proctor RH; Stea G; Mulè G; Logrieco AF; Pinto VF; Moretti A
    Toxins (Basel); 2011 Oct; 3(10):1294-309. PubMed ID: 22069697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand.
    Aoki T; Vaughan MM; McCormick SP; Busman M; Ward TJ; Kelly A; O'Donnell K; Johnston PR; Geiser DM
    Mycologia; 2015; 107(2):409-18. PubMed ID: 25550300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat.
    Puri KD; Zhong S
    Phytopathology; 2010 Oct; 100(10):1007-14. PubMed ID: 20839936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of
    Dong F; Zhang X; Xu JH; Shi JR; Lee YW; Chen XY; Li YP; Mokoena MP; Olaniran AO
    Plant Dis; 2020 Aug; 104(8):2138-2143. PubMed ID: 32539593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization of the Fusarium graminearum species complex in Japan.
    Suga H; Karugia GW; Ward T; Gale LR; Tomimura K; Nakajima T; Miyasaka A; Koizumi S; Kageyama K; Hyakumachi M
    Phytopathology; 2008 Feb; 98(2):159-66. PubMed ID: 18943192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America.
    Ward TJ; Clear RM; Rooney AP; O'Donnell K; Gaba D; Patrick S; Starkey DE; Gilbert J; Geiser DM; Nowicki TW
    Fungal Genet Biol; 2008 Apr; 45(4):473-84. PubMed ID: 18035565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the
    Dong F; Li Y; Chen X; Wu J; Wang S; Zhang X; Ma G; Lee YW; Mokoena MP; Olaniran AO; Xu JH; Shi JR
    Plant Dis; 2021 Oct; 105(10):3269-3275. PubMed ID: 33847508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico.
    Cerón-Bustamante M; Ward TJ; Kelly A; Vaughan MM; McCormick SP; Cowger C; Leyva-Mir SG; Villaseñor-Mir HE; Ayala-Escobar V; Nava-Díaz C
    Int J Food Microbiol; 2018 May; 273():11-19. PubMed ID: 29554557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Distribution of
    Xu F; Liu W; Song Y; Zhou Y; Xu X; Yang G; Wang J; Zhang J; Liu L
    Plant Dis; 2021 Oct; 105(10):2830-2835. PubMed ID: 33881919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences.
    Kristensen R; Torp M; Kosiak B; Holst-Jensen A
    Mycol Res; 2005 Feb; 109(Pt 2):173-86. PubMed ID: 15839101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring of
    Ji L; Li Q; Wang Y; Burgess LW; Sun M; Cao K; Kong L
    Toxins (Basel); 2019 Apr; 11(5):. PubMed ID: 31035348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemotype and Aggressiveness Evaluation of
    Mueller B; Groves CL; Smith DL
    Plant Dis; 2021 Nov; 105(11):3686-3693. PubMed ID: 33487016
    [No Abstract]   [Full Text] [Related]  

  • 33. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
    Desjardins AE; Proctor RH
    Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous real-time PCR detection of Fusarium asiaticum, F. ussurianum and F. vorosii, representing the Asian clade of the F. graminearum species complex.
    Fernández-Ortuño D; Waalwijk C; Van der Lee T; Fan J; Atkins S; West JS; Fraaije BA
    Int J Food Microbiol; 2013 Aug; 166(1):148-54. PubMed ID: 23867363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species composition, toxigenic potential and aggressiveness of Fusarium isolates causing Head Blight of barley in Uruguay.
    Garmendia G; Pattarino L; Negrín C; Martínez-Silveira A; Pereyra S; Ward TJ; Vero S
    Food Microbiol; 2018 Dec; 76():426-433. PubMed ID: 30166170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada.
    Crippin T; Renaud JB; Sumarah MW; Miller JD
    PLoS One; 2019; 14(5):e0216735. PubMed ID: 31071188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.
    Puri KD; Yan C; Leng Y; Zhong S
    PLoS One; 2016; 11(10):e0163803. PubMed ID: 27788144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat.
    Nicolli CP; Machado FJ; Spolti P; Del Ponte EM
    Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geographic Distribution of Trichothecene Chemotypes of the Fusarium graminearum Species Complex in Major Winter Wheat Production Areas of China.
    Shen CM; Hu YC; Sun HY; Li W; Guo JH; Chen HG
    Plant Dis; 2012 Aug; 96(8):1172-1178. PubMed ID: 30727056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.