BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1992776)

  • 1. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine.
    Salom MG; Lahera V; Romero JC
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
    Tolins JP; Palmer RM; Moncada S; Raij L
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of NG-monomethyl-L-arginine and L-arginine on acetylcholine renal response.
    Lahera V; Salom MG; Fiksen-Olsen MJ; Raij L; Romero JC
    Hypertension; 1990 Jun; 15(6 Pt 1):659-63. PubMed ID: 2347626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor.
    Lanzone JA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1995 Jun; 153(6):2055-9. PubMed ID: 7752393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin.
    Lahera V; Salom MG; Fiksen-Olsen MJ; Romero JC
    Am J Hypertens; 1991 Mar; 4(3 Pt 1):260-2. PubMed ID: 2043304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
    Perrella MA; Hildebrand FL; Margulies KB; Burnett JC
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of prostaglandins and nitric oxide in mediating renal response to volume expansion.
    Salazar FJ; Llinas MT; Gonzalez JD; Quesada T; Pinilla JM
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1442-8. PubMed ID: 7611520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
    Tolins JP; Raij L
    Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney.
    Majid DS; Navar LG
    Am J Physiol; 1992 Jan; 262(1 Pt 2):F40-6. PubMed ID: 1733296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of renal nitric oxide synthesis with NG-monomethyl-L-arginine and NG-nitro-L-arginine.
    Naess PA; Kirkebøen KA; Christensen G; Kiil F
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F939-42. PubMed ID: 1535755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
    Scholz H; Kurtz A
    J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of prostaglandins and nitric oxide on basal blood flow and acetylcholine-induced vasodilation in rat diaphragmatic microcirculation.
    Chang HY; Chen CW; Hsiue TR; Chen CR
    J Formos Med Assoc; 1995 Jun; 94(6):332-40. PubMed ID: 7549553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of nitric oxide in canine femoral circulation: comparison of two NO inhibitors.
    Kirkebøen KA; Naess PA; Christensen G; Kiil F
    Cardiovasc Res; 1992 Apr; 26(4):357-61. PubMed ID: 1638567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-derived relaxing factor influences renal vascular resistance.
    Radermacher J; Förstermann U; Frölich JC
    Am J Physiol; 1990 Jul; 259(1 Pt 2):F9-17. PubMed ID: 2115741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide alters renal function and guanosine 3',5'-cyclic monophosphate.
    Siragy HM; Johns RA; Peach MJ; Carey RM
    Hypertension; 1992 Jun; 19(6 Pt 2):775-9. PubMed ID: 1317356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-derived relaxing factor participates in the increased blood flow in response to pentagastrin in the rat stomach mucosa.
    Walder CE; Thiemermann C; Vane JR
    Proc Biol Sci; 1990 Sep; 241(1302):195-200. PubMed ID: 1979444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal actions of endothelin-1 and endothelin-3: interactions with the prostaglandin system and nitric oxide.
    Chou SY; Porush JG
    Am J Kidney Dis; 1995 Jul; 26(1):116-23. PubMed ID: 7541937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute renal excretory actions of losartan in spontaneously hypertensive rats: role of AT2 receptors, prostaglandins, kinins and nitric oxide.
    Munoz-Garcia R; Maeso R; Rodrigo E; Navarro J; Ruilope LM; Casal MC; Cachofeiro V; Lahera V
    J Hypertens; 1995 Dec; 13(12 Pt 2):1779-84. PubMed ID: 8903651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.