These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19928253)

  • 1. Synthesis of monodispersed gamma-Fe2O3 nanoparticles using ferrocene as a novel precursor.
    Bhalerao GM; Sinha AK; Srivastava AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5502-6. PubMed ID: 19928253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron oxide shell as the oxidation-resistant layer in SmCo5 @ Fe2O3 core-shell magnetic nanoparticles.
    Teng X; Yang H
    J Nanosci Nanotechnol; 2007 Jan; 7(1):356-61. PubMed ID: 17455504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis.
    Bomatí-Miguel O; Tartaj P; Morales MP; Bonville P; Golla-Schindler U; Zhao XQ; Veintemillas-Verdaguer S
    Small; 2006 Dec; 2(12):1476-83. PubMed ID: 17193009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.
    Boguslavsky Y; Margel S
    J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of uncapped gamma-Fe2O3 nanoparticles prepared by flame pyrolysis of ferrocene in ethanol.
    Inamdar SN; Haram SK
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2155-8. PubMed ID: 17025142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition.
    Belaïd S; Laurent S; Vermeech M; Vander Elst L; Perez-Morga D; Muller RN
    Nanotechnology; 2013 Feb; 24(5):055705. PubMed ID: 23306107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low toxic maghemite nanoparticles for theranostic applications.
    Kuchma EA; Zolotukhin PV; Belanova AA; Soldatov MA; Lastovina TA; Kubrin SP; Nikolsky AV; Mirmikova LI; Soldatov AV
    Int J Nanomedicine; 2017; 12():6365-6371. PubMed ID: 28919740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.
    Hyeon T; Lee SS; Park J; Chung Y; Na HB
    J Am Chem Soc; 2001 Dec; 123(51):12798-801. PubMed ID: 11749537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale synthesis, size control, and anisotropic growth of gamma-Fe2O3 nanoparticles: organosols and hydrosols.
    Tzitzios VK; Bakandritsos A; Georgakilas V; Basina G; Boukos N; Bourlinos AB; Niarchos D; Petridis D
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2753-7. PubMed ID: 17685293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of monodispersed Fe2O3 nanoparticles and its cellular uptake and cytotoxicity studies.
    Zhou H; Xiao L; Luo Y; Chen JH; Xu JH; Zeng Y; Zhong MZ
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6560-5. PubMed ID: 24245115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications.
    Singh J; Srivastava M; Dutta J; Dutta PK
    Int J Biol Macromol; 2011 Jan; 48(1):170-6. PubMed ID: 21056054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles.
    Santillán-Urquiza E; Arteaga-Cardona F; Hernandez-Herman E; Pacheco-García PF; González-Rodríguez R; Coffer JL; Mendoza-Alvarez ME; Vélez-Ruiz JF; Méndez-Rojas MA
    J Colloid Interface Sci; 2015 Dec; 460():339-48. PubMed ID: 26364076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials.
    Bear JC; Yu B; Blanco-Andujar C; McNaughter PD; Southern P; Mafina MK; Pankhurst QA; Parkin IP
    Faraday Discuss; 2014; 175():83-95. PubMed ID: 25266667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic multilamellar liposomes produced by in situ synthesis of iron oxide nanoparticles: "magnetonions".
    Faure C; Meyre ME; Trépout S; Lambert O; Lebraud E
    J Phys Chem B; 2009 Jun; 113(25):8552-9. PubMed ID: 19534563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles.
    Krishna R; Titus E; Krishna R; Bardhan N; Bahadur D; Gracio J
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6645-51. PubMed ID: 22962801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield synthesis of well-crystalline alpha-Fe2O3 nanoparticles: structural, optical and photocatalytic properties.
    Umar A; Abaker M; Faisal M; Hwang SW; Baskoutas S; Al-Sayari SA
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3474-80. PubMed ID: 21776726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of ZnFe₂O₄ nanoparticles obtained by the thermal decomposition of ZnFe₂(cin)₃(N₂H₄)₃.
    Kalimuthu K; Rangasamy SC; Rakkiyasamy M
    Acta Chim Slov; 2013; 60(4):896-900. PubMed ID: 24362995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.
    Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C
    J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-phase decomposition of ferrocene into wüstite-iron oxide core-shell nanoparticles.
    Loedolff MJ; Fuller RO; Nealon GL; Saunders M; Spackman MA; Koutsantonis GA
    Dalton Trans; 2022 Jan; 51(4):1603-1611. PubMed ID: 34994360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract.
    Aksu Demirezen D; Yıldız YŞ; Yılmaz Ş; Demirezen Yılmaz D
    J Biosci Bioeng; 2019 Feb; 127(2):241-245. PubMed ID: 30348486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.