BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19928807)

  • 1. Protein-directed spatial rearrangement of glycolipids at the air-water interface for bivalent protein binding: in situ infrared reflection absorption spectroscopy.
    Zheng H; Du X
    J Phys Chem B; 2010 Jan; 114(1):577-84. PubMed ID: 19928807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivalent protein binding in carbohydrate-functionalized monolayers through protein-directed rearrangement and reorientation of glycolipids at the air-water interface.
    Zheng H; Du X
    Biochim Biophys Acta; 2011 Sep; 1808(9):2128-35. PubMed ID: 21640072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced binding and biosensing of carbohydrate-functionalized monolayers to target proteins by surface molecular imprinting.
    Zheng H; Du X
    J Phys Chem B; 2009 Aug; 113(32):11330-7. PubMed ID: 19618948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding.
    Zheng H; Du X
    Biochim Biophys Acta; 2013 Feb; 1828(2):792-800. PubMed ID: 23159482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed assembly of binary monolayers with a high protein affinity: infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR).
    Du X; Wang Y
    J Phys Chem B; 2007 Mar; 111(9):2347-56. PubMed ID: 17286427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-directed assembly of binary monolayers at the interface and surface patterns of protein on the monolayers.
    Du X; Wang Y; Ding Y; Guo R
    Langmuir; 2007 Jul; 23(15):8142-9. PubMed ID: 17583923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoglobin-directed assemblies of binary monolayers functionalized with iminodiacetic acid ligands at the air-water interface through metal coordination for multivalent protein binding.
    Wang X; Huang X; Xin Y; Du X
    Phys Chem Chem Phys; 2012 Apr; 14(16):5470-8. PubMed ID: 22415292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of alpha-D-mannopyranoside glycolipid micelles-lectin interactions by surface plasmon resonance method.
    Murthy BN; Voelcker NH; Jayaraman N
    Glycobiology; 2006 Sep; 16(9):822-32. PubMed ID: 16782825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Langmuir studies of bivalent and monovalent alpha-D-mannopyranosides with lectin Con A.
    Bandaru NM; Sampath S; Jayaraman N
    Langmuir; 2005 Oct; 21(21):9591-6. PubMed ID: 16207040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ IRRAS studies of molecular recognition of barbituric acid lipids to melamine at the air-water interface.
    Kong X; Du X
    J Phys Chem B; 2011 Nov; 115(45):13191-8. PubMed ID: 21992528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the aequorin langmuir monolayer.
    Wang C; Micic M; Ensor M; Daunert S; Leblanc RM
    J Phys Chem B; 2008 Apr; 112(13):4146-51. PubMed ID: 18324807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human cardiac troponin I: a Langmuir monolayer study.
    Orbulescu J; Micic M; Ensor M; Trajkovic S; Daunert S; Leblanc RM
    Langmuir; 2010 Mar; 26(5):3268-74. PubMed ID: 20175571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular recognition of cytosine- and guanine-functionalized nucleolipids in the mixed monolayers at the air-water interface and Langmuir-Blodgett films.
    Wang Y; Du X; Miao W; Liang Y
    J Phys Chem B; 2006 Mar; 110(10):4914-23. PubMed ID: 16526731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organophosphorus hydrolase at the air-water interface: secondary structure and interaction with paraoxon.
    Zheng J; Desbat B; Rastogi VK; Shah SS; Defrank JJ; Leblanc RM
    Biomacromolecules; 2006 Oct; 7(10):2806-10. PubMed ID: 17025356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PM-IRRAS investigation of monorhamnolipid orientation at the air-water interface.
    Wang H; Coss CS; Mudalige A; Polt RL; Pemberton JE
    Langmuir; 2013 Apr; 29(14):4441-50. PubMed ID: 23406083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement.
    Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ studies of metal coordinations and molecular orientations in monolayers of amino-acid-derived Schiff bases at the air-water interface.
    Liu H; Zheng H; Miao W; Du X
    Langmuir; 2009 Mar; 25(5):2941-8. PubMed ID: 19437705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the organophosphorus acid anhydrolase langmuir monolayer.
    Wang C; Zheng J; Zhao L; Rastogi VK; Shah SS; DeFrank JJ; Leblanc RM
    J Phys Chem B; 2008 Apr; 112(16):5250-6. PubMed ID: 18373370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of recombinant surfactant protein D with lipopolysaccharide: conformation and orientation of bound protein by IRRAS and simulations.
    Wang L; Brauner JW; Mao G; Crouch E; Seaton B; Head J; Smith K; Flach CR; Mendelsohn R
    Biochemistry; 2008 Aug; 47(31):8103-13. PubMed ID: 18620419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-lipid interactions at the air/water interface.
    Lad MD; Birembaut F; Frazier RA; Green RJ
    Phys Chem Chem Phys; 2005 Oct; 7(19):3478-85. PubMed ID: 16273149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.