BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19928864)

  • 1. Hybrid inhibitors of phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR): design, synthesis, and superior antitumor activity of novel wortmannin-rapamycin conjugates.
    Ayral-Kaloustian S; Gu J; Lucas J; Cinque M; Gaydos C; Zask A; Chaudhary I; Wang J; Di L; Young M; Ruppen M; Mansour TS; Gibbons JJ; Yu K
    J Med Chem; 2010 Jan; 53(1):452-9. PubMed ID: 19928864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pegylated wortmannin and 17-hydroxywortmannin conjugates as phosphoinositide 3-kinase inhibitors active in human tumor xenograft models.
    Zhu T; Gu J; Yu K; Lucas J; Cai P; Tsao R; Gong Y; Li F; Chaudhary I; Desai P; Ruppen M; Fawzi M; Gibbons J; Ayral-Kaloustian S; Skotnicki J; Mansour T; Zask A
    J Med Chem; 2006 Feb; 49(4):1373-8. PubMed ID: 16480272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and structure-activity relationships of ring-opened 17-hydroxywortmannins: potent phosphoinositide 3-kinase inhibitors with improved properties and anticancer efficacy.
    Zask A; Kaplan J; Toral-Barza L; Hollander I; Young M; Tischler M; Gaydos C; Cinque M; Lucas J; Yu K
    J Med Chem; 2008 Mar; 51(5):1319-23. PubMed ID: 18269228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual pan-PI3-kinase/mTOR inhibitors for the treatment of cancer.
    Sutherlin DP; Sampath D; Berry M; Castanedo G; Chang Z; Chuckowree I; Dotson J; Folkes A; Friedman L; Goldsmith R; Heffron T; Lee L; Lesnick J; Lewis C; Mathieu S; Nonomiya J; Olivero A; Pang J; Prior WW; Salphati L; Sideris S; Tian Q; Tsui V; Wan NC; Wang S; Wiesmann C; Wong S; Zhu BY
    J Med Chem; 2010 Feb; 53(3):1086-97. PubMed ID: 20050669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines.
    Zask A; Verheijen JC; Curran K; Kaplan J; Richard DJ; Nowak P; Malwitz DJ; Brooijmans N; Bard J; Svenson K; Lucas J; Toral-Barza L; Zhang WG; Hollander I; Gibbons JJ; Abraham RT; Ayral-Kaloustian S; Mansour TS; Yu K
    J Med Chem; 2009 Aug; 52(16):5013-6. PubMed ID: 19645448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia.
    Martelli AM; Evangelisti C; Chiarini F; Grimaldi C; Manzoli L; McCubrey JA
    Expert Opin Investig Drugs; 2009 Sep; 18(9):1333-49. PubMed ID: 19678801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations.
    Serra V; Markman B; Scaltriti M; Eichhorn PJ; Valero V; Guzman M; Botero ML; Llonch E; Atzori F; Di Cosimo S; Maira M; Garcia-Echeverria C; Parra JL; Arribas J; Baselga J
    Cancer Res; 2008 Oct; 68(19):8022-30. PubMed ID: 18829560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of water-solubilizing groups in pyrazolopyrimidine mTOR inhibitors: discovery of highly potent and selective analogs with improved human microsomal stability.
    Richard DJ; Verheijen JC; Curran K; Kaplan J; Toral-Barza L; Hollander I; Lucas J; Yu K; Zask A
    Bioorg Med Chem Lett; 2009 Dec; 19(24):6830-5. PubMed ID: 19896845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead optimization of N-3-substituted 7-morpholinotriazolopyrimidines as dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors: discovery of PKI-402.
    Dehnhardt CM; Venkatesan AM; Delos Santos E; Chen Z; Santos O; Ayral-Kaloustian S; Brooijmans N; Mallon R; Hollander I; Feldberg L; Lucas J; Chaudhary I; Yu K; Gibbons J; Abraham R; Mansour TS
    J Med Chem; 2010 Jan; 53(2):798-810. PubMed ID: 19968288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.
    McMillin DW; Ooi M; Delmore J; Negri J; Hayden P; Mitsiades N; Jakubikova J; Maira SM; Garcia-Echeverria C; Schlossman R; Munshi NC; Richardson PG; Anderson KC; Mitsiades CS
    Cancer Res; 2009 Jul; 69(14):5835-42. PubMed ID: 19584292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells.
    Chen YJ; Hsiao PW; Lee MT; Mason JI; Ke FC; Hwang JJ
    J Endocrinol; 2007 Feb; 192(2):405-19. PubMed ID: 17283241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel benzofuran-3-one indole inhibitors of PI3 kinase-alpha and the mammalian target of rapamycin: hit to lead studies.
    Bursavich MG; Brooijmans N; Feldberg L; Hollander I; Kim S; Lombardi S; Park K; Mallon R; Gilbert AM
    Bioorg Med Chem Lett; 2010 Apr; 20(8):2586-90. PubMed ID: 20303263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.
    Peyrollier K; Hajduch E; Blair AS; Hyde R; Hundal HS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):361-8. PubMed ID: 10947949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck.
    Amornphimoltham P; Patel V; Sodhi A; Nikitakis NG; Sauk JJ; Sausville EA; Molinolo AA; Gutkind JS
    Cancer Res; 2005 Nov; 65(21):9953-61. PubMed ID: 16267020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR).
    Tsou HR; MacEwan G; Birnberg G; Grosu G; Bursavich MG; Bard J; Brooijmans N; Toral-Barza L; Hollander I; Mansour TS; Ayral-Kaloustian S; Yu K
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2321-5. PubMed ID: 20188552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors.
    Yu K; Lucas J; Zhu T; Zask A; Gaydos C; Toral-Barza L; Gu J; Li F; Chaudhary I; Cai P; Lotvin J; Petersen R; Ruppen M; Fawzi M; Ayral-Kaloustian S; Skotnicki J; Mansour T; Frost P; Gibbons J
    Cancer Biol Ther; 2005 May; 4(5):538-45. PubMed ID: 15846106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors.
    Moreno A; Akcakanat A; Munsell MF; Soni A; Yao JC; Meric-Bernstam F
    Endocr Relat Cancer; 2008 Mar; 15(1):257-66. PubMed ID: 18310292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo.
    Cejka D; Preusser M; Fuereder T; Sieghart W; Werzowa J; Strommer S; Wacheck V
    Anticancer Res; 2008; 28(6A):3801-8. PubMed ID: 19189667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR inhibitor rapamycin alone or combined with cisplatin inhibits growth of esophageal squamous cell carcinoma in nude mice.
    Hou G; Zhang Q; Wang L; Liu M; Wang J; Xue L
    Cancer Lett; 2010 Apr; 290(2):248-54. PubMed ID: 19853373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and SAR of novel 4-morpholinopyrrolopyrimidine derivatives as potent phosphatidylinositol 3-kinase inhibitors.
    Chen Z; Venkatesan AM; Dehnhardt CM; Ayral-Kaloustian S; Brooijmans N; Mallon R; Feldberg L; Hollander I; Lucas J; Yu K; Kong F; Mansour TS
    J Med Chem; 2010 Apr; 53(8):3169-82. PubMed ID: 20334367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.