BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 19929009)

  • 21. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane.
    Zhu Q; Cheng KH; Vaughn MW
    J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partitioning of ethanol in multi-component membranes: effects on membrane structure.
    Polley A; Vemparala S
    Chem Phys Lipids; 2013 Jan; 166():1-11. PubMed ID: 23220048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae".
    Meyer HW; Westermann M; Stumpf M; Richter W; Ulrich AS; Hoischen C
    J Struct Biol; 1998 Dec; 124(1):77-87. PubMed ID: 9931276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 Sep; 1788(9):1877-89. PubMed ID: 19616506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol.
    Mori K; Mahmood MI; Neya S; Matsuzaki K; Hoshino T
    J Phys Chem B; 2012 May; 116(17):5111-21. PubMed ID: 22494278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G
    FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibiting lateral domain formation in lipid bilayers: simulations of alternative steroid headgroup chemistries.
    Perlmutter JD; Sachs JN
    J Am Chem Soc; 2009 Nov; 131(45):16362-3. PubMed ID: 19860442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A
    FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of cholesterol on the bond ordering in hydrated unsaturated lipid bilayers].
    Kornilov VV; Rabinovich AL; Balabaev NK
    Biofizika; 2008; 53(2):250-60. PubMed ID: 18543767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the impact of cholesterol on magnetically aligned sphingomyelin/cholesterol multilamellar vesicles using static (31)P NMR.
    Costello AL; Alam TM
    Chem Phys Lipids; 2010 Jun; 163(6):506-13. PubMed ID: 20385112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N; Okazaki H; Nomura K; Murata M
    Chem Phys Lipids; 2011 Jul; 164(5):401-8. PubMed ID: 21664344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of sterol rings and side chain on the structure and phase behaviour of sphingomyelin bilayers.
    Gao WY; Quinn PJ; Yu ZW
    Mol Membr Biol; 2008 Sep; 25(6-7):485-97. PubMed ID: 18821126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational analysis of water residence on ceramide and sphingomyelin bilayer membranes.
    Imai Y; Liu X; Yamagishi J; Mori K; Neya S; Hoshino T
    J Mol Graph Model; 2010 Nov; 29(3):461-9. PubMed ID: 20951070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy.
    Collado MI; Goñi FM; Alonso A; Marsh D
    Biochemistry; 2005 Mar; 44(12):4911-8. PubMed ID: 15779918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study.
    Róg T; Pasenkiewicz-Gierula M
    Biochimie; 2006 May; 88(5):449-60. PubMed ID: 16356621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine.
    Maulik PR; Shipley GG
    Biochemistry; 1996 Jun; 35(24):8025-34. PubMed ID: 8672507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.