These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19929070)

  • 1. Numerical determination of the exponents controlling the relationship between time, length, and temperature in glass-forming liquids.
    Cammarota C; Cavagna A; Gradenigo G; Grigera TS; Verrocchio P
    J Chem Phys; 2009 Nov; 131(19):194901. PubMed ID: 19929070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale.
    Kokshenev VB; Borges PD; Sullivan NS
    J Chem Phys; 2005 Mar; 122(11):114510. PubMed ID: 15836232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the nonexponentiality of relaxation and relaxation time in the problem of glass transition.
    Trachenko K; Roland CM; Casalini R
    J Phys Chem B; 2008 Apr; 112(16):5111-5. PubMed ID: 18386878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational diffusion in sucrose benzoate near the glass transition: probe size dependence in the breakdown of the Stokes-Einstein equation.
    Rajian JR; Quitevis EL
    J Chem Phys; 2007 Jun; 126(22):224506. PubMed ID: 17581062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of alpha fluctuations in myoglobin's denaturation in the high temperature region: Average relaxation time from an Adam-Gibbs perspective.
    Olivares-Quiroz L; Garcia-Colin LS
    Biophys Chem; 2009 Oct; 144(3):123-9. PubMed ID: 19713030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically correlated regions and configurational entropy in supercooled liquids.
    Capaccioli S; Ruocco G; Zamponi F
    J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the entropy theory of glass formation to poly(alpha-olefins).
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Adam-Gibbs equation and the out-of-equilibrium alpha relaxation of glass forming systems.
    Goitiandia L; Alegria A
    J Chem Phys; 2004 Jul; 121(3):1636-43. PubMed ID: 15260712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevalence of approximate square root(t) relaxation for the dielectric alpha process in viscous organic liquids.
    Nielsen AI; Christensen T; Jakobsen B; Niss K; Olsen NB; Richert R; Dyre JC
    J Chem Phys; 2009 Apr; 130(15):154508. PubMed ID: 19388760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a growing dynamic length scale in a glass-forming binary hard-sphere mixture.
    Flenner E; Zhang M; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051501. PubMed ID: 21728534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of low-temperature superparamagnetism in Mn3O4 nanoparticle ensembles.
    Tackett RJ; Parsons JG; Machado BI; Gaytan SM; Murr LE; Botez CE
    Nanotechnology; 2010 Sep; 21(36):365703. PubMed ID: 20699488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced translational diffusion of rubrene in sucrose benzoate.
    Rajesh Rajian J; Huang W; Richert R; Quitevis EL
    J Chem Phys; 2006 Jan; 124(1):14510. PubMed ID: 16409044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corresponding states of structural glass formers. II.
    Elmatad YS; Chandler D; Garrahan JP
    J Phys Chem B; 2010 Dec; 114(51):17113-9. PubMed ID: 21138279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature.
    Bisquert J; Henn F; Giuntini JC
    J Chem Phys; 2005 Mar; 122(9):094507. PubMed ID: 15836150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.