These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19929071)

  • 1. Dynamic rheology of sphere- and rod-based magnetorheological fluids.
    de Vicente J; Segovia-Gutiérrez JP; Andablo-Reyes E; Vereda F; Hidalgo-Alvarez R
    J Chem Phys; 2009 Nov; 131(19):194902. PubMed ID: 19929071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion.
    Park JH; Chin BD; Park OO
    J Colloid Interface Sci; 2001 Aug; 240(1):349-354. PubMed ID: 11446818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-amplitude oscillatory shear magnetorheology of inverse ferrofluids.
    Ramos J; de Vicente J; Hidalgo-Alvarez R
    Langmuir; 2010 Jun; 26(12):9334-41. PubMed ID: 20345105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids.
    Ido Y; Inagaki T; Yamaguchi T
    J Phys Condens Matter; 2010 Aug; 22(32):324103. PubMed ID: 21386479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of mono- and polydisperse inverse ferrofluids.
    Saldivar-Guerrero R; Richter R; Rehberg I; Aksel N; Heymann L; Rodriguez-Fernández OS
    J Chem Phys; 2006 Aug; 125(8):084907. PubMed ID: 16965057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field effects on shear and normal stresses in magnetorheological finishing.
    Lambropoulos JC; Miao C; Jacobs SD
    Opt Express; 2010 Sep; 18(19):19713-23. PubMed ID: 20940866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of polar interactions on the magnetorheology of silica-coated magnetite suspensions in oil media.
    Pacull J; Gonçalves S; Delgado AV; Durán JD; Jiménez ML
    J Colloid Interface Sci; 2009 Sep; 337(1):254-9. PubMed ID: 19527908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long time response of soft magnetorheological gels.
    An HN; Sun B; Picken SJ; Mendes E
    J Phys Chem B; 2012 Apr; 116(15):4702-11. PubMed ID: 22439870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow.
    Satoh A; Ozaki M; Ishikawa T; Majima T
    J Colloid Interface Sci; 2005 Dec; 292(2):581-90. PubMed ID: 16081082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse magnetorheological fluids.
    Rodríguez-Arco L; López-López MT; Zubarev AY; Gdula K; Durán JD
    Soft Matter; 2014 Sep; 10(33):6256-65. PubMed ID: 25022363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A slender-body micromechanical model for viscoelasticity of magnetic colloids: comparison with preliminary experimental data.
    de Vicente J; López-López MT; Durán JD; Bossis G
    J Colloid Interface Sci; 2005 Feb; 282(1):193-201. PubMed ID: 15576099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease.
    Mohamad N; Ubaidillah ; Mazlan SA; Imaduddin F; Choi SB; Yazid IIM
    PLoS One; 2018; 13(4):e0191795. PubMed ID: 29630595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases.
    Mohamad N; ; Mazlan SA; Choi SB; Abdul Aziz SA; Sugimoto M
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuum model of magnetic field induced viscoelasticity in magnetorheological fluids.
    Potisk T; Svenšek D; Pleiner H; Brand HR
    J Chem Phys; 2019 May; 150(17):174901. PubMed ID: 31067883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft water-soluble microgel dispersions: structure and rheology.
    Omari A; Tabary R; Rousseau D; Calderon FL; Monteil J; Chauveteau G
    J Colloid Interface Sci; 2006 Oct; 302(2):537-46. PubMed ID: 16928380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.
    Ji S; Jiang R; Winkler RG; Gompper G
    J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.
    Vereda F; de Vicente J; Hidalgo-Alvarez R
    Chemphyschem; 2009 Jun; 10(8):1165-79. PubMed ID: 19434654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology and orientational distributions of rodlike particles with magnetic moment normal to the particle axis for semi-dense dispersions (analysis by means of mean field approximation).
    Satoh A; Sakuda Y
    J Colloid Interface Sci; 2007 Apr; 308(2):532-41. PubMed ID: 17275015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.