These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19929818)
21. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Kondaparla S; Soni A; Manhas A; Srivastava K; Puri SK; Katti SB Bioorg Chem; 2017 Feb; 70():74-85. PubMed ID: 27908538 [TBL] [Abstract][Full Text] [Related]
22. Comparison of the reactivity of antimalarial 1,2,4,5-tetraoxanes with 1,2,4-trioxolanes in the presence of ferrous iron salts, heme, and ferrous iron salts/phosphatidylcholine. Bousejra-El Garah F; Wong MH; Amewu RK; Muangnoicharoen S; Maggs JL; Stigliani JL; Park BK; Chadwick J; Ward SA; O'Neill PM J Med Chem; 2011 Oct; 54(19):6443-55. PubMed ID: 21888440 [TBL] [Abstract][Full Text] [Related]
23. Naturally occurring peroxides with biological activities. Jung M; Kim H; Lee K; Park M Mini Rev Med Chem; 2003 Mar; 3(2):159-65. PubMed ID: 12570849 [TBL] [Abstract][Full Text] [Related]
24. Plasmodium falciparum endoplasmic reticulum-resident calcium binding protein is a possible target of synthetic antimalarial endoperoxides, N-89 and N-251. Morita M; Sanai H; Hiramoto A; Sato A; Hiraoka O; Sakura T; Kaneko O; Masuyama A; Nojima M; Wataya Y; Kim HS J Proteome Res; 2012 Dec; 11(12):5704-11. PubMed ID: 23061985 [TBL] [Abstract][Full Text] [Related]
25. Antimalarial Chemotherapy: Natural Product Inspired Development of Preclinical and Clinical Candidates with Diverse Mechanisms of Action. Fernández-Álvaro E; Hong WD; Nixon GL; O'Neill PM; Calderón F J Med Chem; 2016 Jun; 59(12):5587-603. PubMed ID: 26791529 [TBL] [Abstract][Full Text] [Related]
26. Novel hybrid molecules based on 15-membered azalide as potential antimalarial agents. Starčević K; Pešić D; Toplak A; Landek G; Alihodžić S; Herreros E; Ferrer S; Spaventi R; Perić M Eur J Med Chem; 2012 Mar; 49():365-78. PubMed ID: 22321992 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and evaluation of the antimalarial, anticancer, and caspase 3 activities of tetraoxane dimers. Amewu RK; Chadwick J; Hussain A; Panda S; Rinki R; Janneh O; Ward SA; Miguel C; Burrell-Saward H; Vivas L; O'Neill PM Bioorg Med Chem; 2013 Dec; 21(23):7392-7. PubMed ID: 24148834 [TBL] [Abstract][Full Text] [Related]
28. Functionalized 4-aminoquinolines by rearrangement of pyrazole N-heterocyclic carbenes. Schmidt A; Münster N; Dreger A Angew Chem Int Ed Engl; 2010 Apr; 49(15):2790-3. PubMed ID: 20229542 [No Abstract] [Full Text] [Related]
30. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Rudrapal M; Chetia D Drug Des Devel Ther; 2016; 10():3575-3590. PubMed ID: 27843298 [TBL] [Abstract][Full Text] [Related]
31. An efficient route into synthetically challenging bridged achiral 1,2,4,5-tetraoxanes with antimalarial activity. Ellis GL; Amewu R; Hall C; Rimmer K; Ward SA; O'Neill PM Bioorg Med Chem Lett; 2008 Mar; 18(5):1720-4. PubMed ID: 18243702 [TBL] [Abstract][Full Text] [Related]
32. Novel series of 1,2,4-trioxane derivatives as antimalarial agents. Rudrapal M; Chetia D; Singh V J Enzyme Inhib Med Chem; 2017 Dec; 32(1):1159-1173. PubMed ID: 28870093 [TBL] [Abstract][Full Text] [Related]
33. Synthesis, Docking, In Vitro and In Vivo Antimalarial Activity of Hybrid 4-aminoquinoline-1,3,5-triazine Derivatives Against Wild and Mutant Malaria Parasites. Bhat HR; Singh UP; Gahtori P; Ghosh SK; Gogoi K; Prakash A; Singh RK Chem Biol Drug Des; 2015 Sep; 86(3):265-71. PubMed ID: 25487527 [TBL] [Abstract][Full Text] [Related]
34. The fight against drug-resistant malaria: novel plasmodial targets and antimalarial drugs. Choi SR; Mukherjee P; Avery MA Curr Med Chem; 2008; 15(2):161-71. PubMed ID: 18220771 [TBL] [Abstract][Full Text] [Related]
35. Recent Advances in the Biological Investigation of Organometallic Platinum-Group Metal (Ir, Ru, Rh, Os, Pd, Pt) Complexes as Antimalarial Agents. Mbaba M; Golding TM; Smith GS Molecules; 2020 Nov; 25(22):. PubMed ID: 33198217 [TBL] [Abstract][Full Text] [Related]
37. Machines vs Malaria: A Flow-Based Preparation of the Drug Candidate OZ439. Lau SH; Galván A; Merchant RR; Battilocchio C; Souto JA; Berry MB; Ley SV Org Lett; 2015 Jul; 17(13):3218-21. PubMed ID: 26079282 [TBL] [Abstract][Full Text] [Related]
38. Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. Opsenica I; Opsenica D; Smith KS; Milhous WK; Solaja BA J Med Chem; 2008 Apr; 51(7):2261-6. PubMed ID: 18330976 [TBL] [Abstract][Full Text] [Related]
39. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. O'Neill PM; Amewu RK; Nixon GL; Bousejra ElGarah F; Mungthin M; Chadwick J; Shone AE; Vivas L; Lander H; Barton V; Muangnoicharoen S; Bray PG; Davies J; Park BK; Wittlin S; Brun R; Preschel M; Zhang K; Ward SA Angew Chem Int Ed Engl; 2010 Aug; 49(33):5693-7. PubMed ID: 20629058 [No Abstract] [Full Text] [Related]