These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 19930132)

  • 1. Chromatin regulation functions in plant abiotic stress responses.
    Kim JM; To TK; Nishioka T; Seki M
    Plant Cell Environ; 2010 Apr; 33(4):604-11. PubMed ID: 19930132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana.
    Kim JM; To TK; Ishida J; Morosawa T; Kawashima M; Matsui A; Toyoda T; Kimura H; Shinozaki K; Seki M
    Plant Cell Physiol; 2008 Oct; 49(10):1580-8. PubMed ID: 18779215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of histone modifications in plant abiotic stress responses.
    Yuan L; Liu X; Luo M; Yang S; Wu K
    J Integr Plant Biol; 2013 Oct; 55(10):892-901. PubMed ID: 24034164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs.
    Covarrubias AA; Reyes JL
    Plant Cell Environ; 2010 Apr; 33(4):481-9. PubMed ID: 19781008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription regulation of abiotic stress responses in rice: a combined action of transcription factors and epigenetic mechanisms.
    Santos AP; Serra T; Figueiredo DD; Barros P; Lourenço T; Chander S; Oliveira MM; Saibo NJ
    OMICS; 2011 Dec; 15(12):839-57. PubMed ID: 22136664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity.
    Hong Y; Zhang W; Wang X
    Plant Cell Environ; 2010 Apr; 33(4):627-35. PubMed ID: 19968827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
    Miller G; Suzuki N; Ciftci-Yilmaz S; Mittler R
    Plant Cell Environ; 2010 Apr; 33(4):453-67. PubMed ID: 19712065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of epigenetic processes in controlling flowering time in plants exposed to stress.
    Yaish MW; Colasanti J; Rothstein SJ
    J Exp Bot; 2011 Jul; 62(11):3727-35. PubMed ID: 21633082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DREBs in regulation of abiotic stress responses in plants.
    Lata C; Prasad M
    J Exp Bot; 2011 Oct; 62(14):4731-48. PubMed ID: 21737415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.
    Nakashima K; Tran LS; Van Nguyen D; Fujita M; Maruyama K; Todaka D; Ito Y; Hayashi N; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Aug; 51(4):617-30. PubMed ID: 17587305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Omics' analyses of regulatory networks in plant abiotic stress responses.
    Urano K; Kurihara Y; Seki M; Shinozaki K
    Curr Opin Plant Biol; 2010 Apr; 13(2):132-8. PubMed ID: 20080055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F; Maeta E; Terashima A; Takumi S
    Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana.
    Kim JM; To TK; Ishida J; Matsui A; Kimura H; Seki M
    Plant Cell Physiol; 2012 May; 53(5):847-56. PubMed ID: 22505693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.
    Chinnusamy V; Schumaker K; Zhu JK
    J Exp Bot; 2004 Jan; 55(395):225-36. PubMed ID: 14673035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress.
    Kwak KJ; Kim JY; Kim YO; Kang H
    Plant Cell Physiol; 2007 Feb; 48(2):221-31. PubMed ID: 17169924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on plant abiotic stress responses in the post-genome era: past, present and future.
    Hirayama T; Shinozaki K
    Plant J; 2010 Mar; 61(6):1041-52. PubMed ID: 20409277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant gene networks in osmotic stress response: from genes to regulatory networks.
    Tran LS; Nakashima K; Shinozaki K; Yamaguchi-Shinozaki K
    Methods Enzymol; 2007; 428():109-28. PubMed ID: 17875414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response.
    Kim JH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-rhizobacteria interactions alleviate abiotic stress conditions.
    Dimkpa C; Weinand T; Asch F
    Plant Cell Environ; 2009 Dec; 32(12):1682-94. PubMed ID: 19671096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin proteomics and epigenetic regulatory circuits.
    Bönisch C; Nieratschker SM; Orfanos NK; Hake SB
    Expert Rev Proteomics; 2008 Feb; 5(1):105-19. PubMed ID: 18282127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.