These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19930544)
1. Toxic effects of brake wear particles on epithelial lung cells in vitro. Gasser M; Riediker M; Mueller L; Perrenoud A; Blank F; Gehr P; Rothen-Rutishauser B Part Fibre Toxicol; 2009 Nov; 6():30. PubMed ID: 19930544 [TBL] [Abstract][Full Text] [Related]
2. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation. Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788 [TBL] [Abstract][Full Text] [Related]
3. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. Gonet T; Maher BA; Nyirő-Kósa I; Pósfai M; Vaculík M; Kukutschová J Environ Pollut; 2021 Nov; 288():117808. PubMed ID: 34329055 [TBL] [Abstract][Full Text] [Related]
4. Copper-dependent biological effects of particulate matter produced by brake systems on lung alveolar cells. Figliuzzi M; Tironi M; Longaretti L; Mancini A; Teoldi F; Sangalli F; Remuzzi A Arch Toxicol; 2020 Sep; 94(9):2965-2979. PubMed ID: 32577786 [TBL] [Abstract][Full Text] [Related]
5. Gaseous emissions from brake wear can form secondary particulate matter. Patel A; Aggarwal S; Bard L; Durif O; Introna M; Juárez-Facio AT; Tu M; Elihn K; Nozière B; Olofsson U; Steimer SS Sci Rep; 2024 Oct; 14(1):23253. PubMed ID: 39370421 [TBL] [Abstract][Full Text] [Related]
6. Inhalation toxicity profiles of particulate matter: a comparison between brake wear with other sources of emission. Gerlofs-Nijland ME; Bokkers BGH; Sachse H; Reijnders JJE; Gustafsson M; Boere AJF; Fokkens PFH; Leseman DLAC; Augsburg K; Cassee FR Inhal Toxicol; 2019 Feb; 31(3):89-98. PubMed ID: 31066325 [No Abstract] [Full Text] [Related]
8. Brake wear particle emissions: a review. Grigoratos T; Martini G Environ Sci Pollut Res Int; 2015 Feb; 22(4):2491-504. PubMed ID: 25318420 [TBL] [Abstract][Full Text] [Related]
9. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes. Nosratabadi AR; Gustafsson M; Lovén K; Ljunggren SA; Olofsson U; Abbasi S; Blomqvist G; Karlsson H; Ljungman AG; Cassee FR; Gerlofs-Nijland ME; Gudmundsson A Inhal Toxicol; 2023 Dec; 35(13-14):309-323. PubMed ID: 38054445 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants. Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748 [TBL] [Abstract][Full Text] [Related]
11. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes. Vojtíšek-Lom M; Vaculík M; Pechout M; Hopan F; Arul Raj AF; Penumarti S; Horák JS; Popovicheva O; Ondráček J; Doušová B Sci Total Environ; 2021 Sep; 788():147779. PubMed ID: 34034186 [TBL] [Abstract][Full Text] [Related]
12. Biological effects of brake wear particles in mammalian models: A systematic review. Forest V; Pourchez J Sci Total Environ; 2023 Dec; 905():167266. PubMed ID: 37741409 [TBL] [Abstract][Full Text] [Related]
13. Automotive braking is a source of highly charged aerosol particles. Thomas AE; Bauer PS; Dam M; Perraud V; Wingen LM; Smith JN Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2313897121. PubMed ID: 38466875 [TBL] [Abstract][Full Text] [Related]
14. Particle formation due to brake wear, influence on the people health and measures for their reduction: a review. Stojanovic N; Glisovic J; Abdullah OI; Belhocine A; Grujic I Environ Sci Pollut Res Int; 2022 Feb; 29(7):9606-9625. PubMed ID: 34993797 [TBL] [Abstract][Full Text] [Related]
15. PM Liu Y; Chen H; Yin C; Federici M; Perricone G; Li Y; Margaritis D; Shen Y; Guo J; Wei T Chemosphere; 2022 Oct; 305():135481. PubMed ID: 35753424 [TBL] [Abstract][Full Text] [Related]
16. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Vattanasit U; Navasumrit P; Khadka MB; Kanitwithayanun J; Promvijit J; Autrup H; Ruchirawat M Int J Hyg Environ Health; 2014 Jan; 217(1):23-33. PubMed ID: 23567252 [TBL] [Abstract][Full Text] [Related]
17. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles. Hicks W; Green DC; Beevers S Environ Pollut; 2023 Nov; 336():122400. PubMed ID: 37595730 [TBL] [Abstract][Full Text] [Related]
18. Metal contents and size distributions of brake and tire wear particles dispersed in the near-road environment. Lopez B; Wang X; Chen LA; Ma T; Mendez-Jimenez D; Cobb LC; Frederickson C; Fang T; Hwang B; Shiraiwa M; Park M; Park K; Yao Q; Yoon S; Jung H Sci Total Environ; 2023 Jul; 883():163561. PubMed ID: 37088393 [TBL] [Abstract][Full Text] [Related]
19. Direct measurement of brake and tire wear particles based on real-world driving conditions. Zhang Q; Fang T; Men Z; Wei N; Peng J; Du T; Zhang X; Ma Y; Wu L; Mao H Sci Total Environ; 2024 Jan; 906():167764. PubMed ID: 37832679 [TBL] [Abstract][Full Text] [Related]
20. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]