These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19930625)

  • 1. Mapping cortical hubs in tinnitus.
    Schlee W; Mueller N; Hartmann T; Keil J; Lorenz I; Weisz N
    BMC Biol; 2009 Nov; 7():80. PubMed ID: 19930625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.
    Schlee W; Weisz N; Bertrand O; Hartmann T; Elbert T
    PLoS One; 2008; 3(11):e3720. PubMed ID: 19005566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception - identifying the core distress network.
    Mohan A; Davidson C; De Ridder D; Vanneste S
    Brain Imaging Behav; 2020 Feb; 14(1):289-307. PubMed ID: 30443893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal resting-state cortical coupling in chronic tinnitus.
    Schlee W; Hartmann T; Langguth B; Weisz N
    BMC Neurosci; 2009 Feb; 10():11. PubMed ID: 19228390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using resting state functional connectivity to unravel networks of tinnitus.
    Husain FT; Schmidt SA
    Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maladaptive alterations of resting state cortical network in Tinnitus: A directed functional connectivity analysis of a larger MEG data set.
    Paraskevopoulos E; Dobel C; Wollbrink A; Salvari V; Bamidis PD; Pantev C
    Sci Rep; 2019 Oct; 9(1):15452. PubMed ID: 31664058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas.
    Berlot E; Arts R; Smit J; George E; Gulban OF; Moerel M; Stokroos R; Formisano E; De Martino F
    Neuroimage Clin; 2020; 25():102166. PubMed ID: 31958686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients.
    Vanneste S; van de Heyning P; De Ridder D
    Eur J Neurosci; 2011 Sep; 34(5):718-31. PubMed ID: 21848924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectivity graph analysis of the auditory resting state network in tinnitus.
    Maudoux A; Lefebvre P; Cabay JE; Demertzi A; Vanhaudenhuyse A; Laureys S; Soddu A
    Brain Res; 2012 Nov; 1485():10-21. PubMed ID: 22579727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex.
    Song JJ; De Ridder D; Weisz N; Schlee W; Van de Heyning P; Vanneste S
    Brain Struct Funct; 2014 May; 219(3):1113-28. PubMed ID: 23609486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus.
    Zhang J; Chen YC; Feng X; Yang M; Liu B; Qian C; Wang J; Salvi R; Teng GJ
    Eur J Radiol; 2015 Jul; 84(7):1277-84. PubMed ID: 25935516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory resting-state network connectivity in tinnitus: a functional MRI study.
    Maudoux A; Lefebvre P; Cabay JE; Demertzi A; Vanhaudenhuyse A; Laureys S; Soddu A
    PLoS One; 2012; 7(5):e36222. PubMed ID: 22574141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global resting-state functional connectivity of neural oscillations in tinnitus with and without hearing loss.
    Demopoulos C; Duong X; Hinkley LB; Ranasinghe KG; Mizuiri D; Garrett C; Honma S; Henderson-Sabes J; Findlay A; Racine-Belkoura C; Cheung SW; Nagarajan SS
    Hum Brain Mapp; 2020 Jul; 41(10):2846-2861. PubMed ID: 32243040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distress-dependent temporal variability of regions encoding domain-specific and domain-general behavioral manifestations of phantom percepts.
    Mohan A; De Ridder D; Idiculla R; DSouza C; Vanneste S
    Eur J Neurosci; 2018 Jul; 48(2):1743-1764. PubMed ID: 29888410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory network connectivity in tinnitus patients: a resting-state fMRI study.
    Davies J; Gander PE; Andrews M; Hall DA
    Int J Audiol; 2014 Mar; 53(3):192-8. PubMed ID: 24200464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered intra- and interregional synchronization in resting-state cerebral networks associated with chronic tinnitus.
    Chen YC; Zhang J; Li XW; Xia W; Feng X; Qian C; Yang XY; Lu CQ; Wang J; Salvi R; Teng GJ
    Neural Plast; 2015; 2015():475382. PubMed ID: 25734018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.
    Chen YC; Xia W; Chen H; Feng Y; Xu JJ; Gu JP; Salvi R; Yin X
    Hum Brain Mapp; 2017 May; 38(5):2384-2397. PubMed ID: 28112466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound.
    Silchenko AN; Adamchic I; Hauptmann C; Tass PA
    Neuroimage; 2013 Aug; 77():133-47. PubMed ID: 23528923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.