BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 19930712)

  • 21. On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL.
    Meuwissen T; van den Berg I; Goddard M
    Genet Sel Evol; 2021 Feb; 53(1):19. PubMed ID: 33637049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint genomic evaluation of French dairy cattle breeds using multiple-trait models.
    Karoui S; Carabaño MJ; Díaz C; Legarra A
    Genet Sel Evol; 2012 Dec; 44(1):39. PubMed ID: 23216664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle.
    Guarini AR; Lourenco DAL; Brito LF; Sargolzaei M; Baes CF; Miglior F; Misztal I; Schenkel FS
    J Dairy Sci; 2018 Sep; 101(9):8076-8086. PubMed ID: 29935829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy of Igenity genomically estimated breeding values for predicting Australian Angus BREEDPLAN traits.
    Boerner V; Johnston D; Wu XL; Bauck S
    J Anim Sci; 2015 Feb; 93(2):513-21. PubMed ID: 25549982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population.
    Carillier C; Larroque H; Robert-Granié C
    Genet Sel Evol; 2014 Oct; 46(1):67. PubMed ID: 25927866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards multi-breed genomic evaluations for female fertility of tropical beef cattle.
    Hayes BJ; Corbet NJ; Allen JM; Laing AR; Fordyce G; Lyons R; McGowan MR; Burns BM
    J Anim Sci; 2019 Jan; 97(1):55-62. PubMed ID: 30371787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Invited review: Genomic selection in dairy cattle: progress and challenges.
    Hayes BJ; Bowman PJ; Chamberlain AJ; Goddard ME
    J Dairy Sci; 2009 Feb; 92(2):433-43. PubMed ID: 19164653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle.
    Rolf MM; Garrick DJ; Fountain T; Ramey HR; Weaber RL; Decker JE; Pollak EJ; Schnabel RD; Taylor JF
    Genet Sel Evol; 2015 Apr; 47(1):23. PubMed ID: 25884158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic predictions in purebreds with a multibreed genomic relationship matrix1.
    Steyn Y; Lourenco DAL; Misztal I
    J Anim Sci; 2019 Nov; 97(11):4418-4427. PubMed ID: 31539424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic predictions based on a joint reference population for the Nordic Red cattle breeds.
    Zhou L; Heringstad B; Su G; Guldbrandtsen B; Meuwissen TH; Svendsen M; Grove H; Nielsen US; Lund MS
    J Dairy Sci; 2014 Jul; 97(7):4485-96. PubMed ID: 24792791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of meta-analyses and joint analyses to select variants in whole genome sequences for genomic evaluation: An application in milk production of French dairy cattle breeds.
    Teissier M; Sanchez MP; Boussaha M; Barbat A; Hoze C; Robert-Granie C; Croiseau P
    J Dairy Sci; 2018 Apr; 101(4):3126-3139. PubMed ID: 29428760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea.
    Iqbal A; Choi TJ; Kim YS; Lee YM; Zahangir Alam M; Jung JH; Choe HS; Kim JJ
    Asian-Australas J Anim Sci; 2019 Nov; 32(11):1657-1663. PubMed ID: 31480201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes.
    Piccoli ML; Brito LF; Braccini J; Cardoso FF; Sargolzaei M; Schenkel FS
    BMC Genet; 2017 Jan; 18(1):2. PubMed ID: 28100165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple Country and Breed Genomic Prediction of Tick Resistance in Beef Cattle.
    Cardoso FF; Matika O; Djikeng A; Mapholi N; Burrow HM; Yokoo MJI; Campos GS; Gulias-Gomes CC; Riggio V; Pong-Wong R; Engle B; Porto-Neto L; Maiwashe A; Hayes BJ
    Front Immunol; 2021; 12():620847. PubMed ID: 34248929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic predictions across Nordic Holstein and Nordic Red using the genomic best linear unbiased prediction model with different genomic relationship matrices.
    Zhou L; Lund MS; Wang Y; Su G
    J Anim Breed Genet; 2014 Aug; 131(4):249-57. PubMed ID: 24750283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utility of whole-genome sequence data for across-breed genomic prediction.
    Raymond B; Bouwman AC; Schrooten C; Houwing-Duistermaat J; Veerkamp RF
    Genet Sel Evol; 2018 May; 50(1):27. PubMed ID: 29776327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic prediction based on runs of homozygosity.
    Luan T; Yu X; Dolezal M; Bagnato A; Meuwissen TH
    Genet Sel Evol; 2014 Oct; 46(1):64. PubMed ID: 25284459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.