These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19931885)

  • 21. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining modeling and monitoring to study fecal contamination in a small rural catchment.
    Bougeard M; Le Saux JC; Teillon A; Belloir J; Le Mennec C; Thome S; Durand G; Pommepuy M
    J Water Health; 2011 Sep; 9(3):467-82. PubMed ID: 21976194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin.
    Alameddine I; Qian SS; Reckhow KH
    Water Res; 2011 Jan; 45(1):51-62. PubMed ID: 20800259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus load estimation in the Saginaw River, MI using a Bayesian hierarchical/multilevel model.
    Cha Y; Stow CA; Reckhow KH; DeMarchi C; Johengen TH
    Water Res; 2010 May; 44(10):3270-82. PubMed ID: 20382406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bayesian approach for estimating bacterial nonpoint source loading in an estuary with limited observations.
    Shen J; Zhao Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1574-84. PubMed ID: 20183516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation.
    Shen J; Zhao Y
    Water Res; 2010 Jan; 44(1):77-84. PubMed ID: 19781737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape.
    Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR
    Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of riparian zone protection from cattle on nutrient, bacteria, F-coliphage, and loading of an intermittent stream.
    Sunohara MD; Topp E; Wilkes G; Gottschall N; Neumann N; Ruecker N; Jones TH; Edge TA; Marti R; Lapen DR
    J Environ Qual; 2012; 41(4):1301-14. PubMed ID: 22751075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial pollution of the riverine surface microlayer and subsurface water.
    Skórczewski P; Mudryk Z
    Water Sci Technol; 2009; 60(1):127-34. PubMed ID: 19587410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling the fate of faecal indicators in a coastal basin.
    Kashefipour SM; Lin B; Falconer RA
    Water Res; 2006 Apr; 40(7):1413-25. PubMed ID: 16537086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial contamination associated with estuarine shoreline development.
    Kirby-Smith WW; White NM
    J Appl Microbiol; 2006 Apr; 100(4):648-57. PubMed ID: 16553719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A software monitor for intermittent bacteria contamination in urban rivers.
    Mietzel T; Frehmann T; Geiger WF; Schilling W
    Water Sci Technol; 2003; 47(2):165-70. PubMed ID: 12636076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters.
    Gonzalez RA; Conn KE; Crosswell JR; Noble RT
    Water Res; 2012 Nov; 46(18):5871-82. PubMed ID: 22981488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.
    Fujioka RS
    Water Sci Technol; 2001; 44(7):181-8. PubMed ID: 11724486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of recreation on recreational water quality of a small tropical stream.
    Phillip DA; Antoine P; Cooper V; Francis L; Mangal E; Seepersad N; Ragoo R; Ramsaran S; Singh I; Ramsubhag A
    J Environ Monit; 2009 Jun; 11(6):1192-8. PubMed ID: 19513450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Storm effects on regional beach water quality along the southern California shoreline.
    Noble RT; Weisberg SB; Leecaster MK; McGee CD; Dorsey JH; Vainik P; Orozco-Borbón V
    J Water Health; 2003 Mar; 1(1):23-31. PubMed ID: 15384270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological control of fecal indicator bacteria in an urban stream.
    Surbeck CQ; Jiang SC; Grant SB
    Environ Sci Technol; 2010 Jan; 44(2):631-7. PubMed ID: 20028091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subannual models for catchment management: evaluating model performance on three European catchments.
    Silgram M; Schoumans OF; Walvoort DJ; Anthony SG; Groenendijk P; Stromqvist J; Bouraoui F; Arheimer B; Kapetanaki M; Lo Porto A; Mårtensson K
    J Environ Monit; 2009 Mar; 11(3):526-39. PubMed ID: 19280032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.