These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 19932078)
21. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. Kuzkaya N; Weissmann N; Harrison DG; Dikalov S J Biol Chem; 2003 Jun; 278(25):22546-54. PubMed ID: 12692136 [TBL] [Abstract][Full Text] [Related]
22. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Satoh M; Fujimoto S; Haruna Y; Arakawa S; Horike H; Komai N; Sasaki T; Tsujioka K; Makino H; Kashihara N Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247 [TBL] [Abstract][Full Text] [Related]
23. Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Bevers LM; Braam B; Post JA; van Zonneveld AJ; Rabelink TJ; Koomans HA; Verhaar MC; Joles JA Hypertension; 2006 Jan; 47(1):87-94. PubMed ID: 16344367 [TBL] [Abstract][Full Text] [Related]
24. Carboxy-PTIO increases the tetrahydrobiopterin level in mouse brain microvascular endothelial cells. Shimizu S; Ishii M; Iwasaki M; Shiota K; Yamamoto T; Kiuchi Y Jpn J Pharmacol; 2001 Sep; 87(1):51-60. PubMed ID: 11676198 [TBL] [Abstract][Full Text] [Related]
25. Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction of tetrahydrobiopterin. Topal G; Brunet A; Millanvoye E; Boucher JL; Rendu F; Devynck MA; David-Dufilho M Free Radic Biol Med; 2004 Jun; 36(12):1532-41. PubMed ID: 15182855 [TBL] [Abstract][Full Text] [Related]
26. Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Masano T; Kawashima S; Toh R; Satomi-Kobayashi S; Shinohara M; Takaya T; Sasaki N; Takeda M; Tawa H; Yamashita T; Yokoyama M; Hirata K Circ J; 2008 Sep; 72(9):1512-9. PubMed ID: 18724032 [TBL] [Abstract][Full Text] [Related]
27. Tetrahydrobiopterin attenuates superoxide-induced reduction in nitric oxide. Bowers MC; Hargrove LA; Kelly KA; Wu G; Meininger CJ Front Biosci (Schol Ed); 2011 Jun; 3(4):1263-72. PubMed ID: 21622269 [TBL] [Abstract][Full Text] [Related]
28. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Dumitrescu C; Biondi R; Xia Y; Cardounel AJ; Druhan LJ; Ambrosio G; Zweier JL Proc Natl Acad Sci U S A; 2007 Sep; 104(38):15081-6. PubMed ID: 17848522 [TBL] [Abstract][Full Text] [Related]
29. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. Rubbo H; Radi R; Trujillo M; Telleri R; Kalyanaraman B; Barnes S; Kirk M; Freeman BA J Biol Chem; 1994 Oct; 269(42):26066-75. PubMed ID: 7929318 [TBL] [Abstract][Full Text] [Related]
30. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104 [TBL] [Abstract][Full Text] [Related]
31. Anti-inflammatory effects of tetrahydrobiopterin on early rejection in renal allografts: modulation of inducible nitric oxide synthase. Huisman A; Vos I; van Faassen EE; Joles JA; Gröne HJ; Martasek P; van Zonneveld AJ; Vanin AF; Rabelink TJ FASEB J; 2002 Jul; 16(9):1135-7. PubMed ID: 12039851 [TBL] [Abstract][Full Text] [Related]
32. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Flaherty RL; Owen M; Fagan-Murphy A; Intabli H; Healy D; Patel A; Allen MC; Patel BA; Flint MS Breast Cancer Res; 2017 Mar; 19(1):35. PubMed ID: 28340615 [TBL] [Abstract][Full Text] [Related]
33. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Akaike T; Suga M; Maeda H Proc Soc Exp Biol Med; 1998 Jan; 217(1):64-73. PubMed ID: 9421208 [TBL] [Abstract][Full Text] [Related]
34. A comparative study of neuronal and inducible nitric oxide synthases: generation of nitric oxide, superoxide, and hydrogen peroxide. Weaver J; Porasuphatana S; Tsai P; Pou S; Roman LJ; Rosen GM Biochim Biophys Acta; 2005 Nov; 1726(3):302-8. PubMed ID: 16216417 [TBL] [Abstract][Full Text] [Related]
35. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells. Sugiyama T; Levy BD; Michel T J Biol Chem; 2009 May; 284(19):12691-700. PubMed ID: 19286667 [TBL] [Abstract][Full Text] [Related]
36. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide. Heine CL; Schmidt R; Geckl K; Schrammel A; Gesslbauer B; Schmidt K; Mayer B; Gorren AC J Biol Chem; 2015 Oct; 290(41):24932-44. PubMed ID: 26296888 [TBL] [Abstract][Full Text] [Related]
37. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. Banan A; Fields JZ; Decker H; Zhang Y; Keshavarzian A J Pharmacol Exp Ther; 2000 Sep; 294(3):997-1008. PubMed ID: 10945852 [TBL] [Abstract][Full Text] [Related]
38. Dynamic determination of Ox-LDL-induced oxidative/nitrosative stress in single macrophage by using fluorescent probes. Deng T; Xu K; Zhang L; Zheng X Cell Biol Int; 2008 Nov; 32(11):1425-32. PubMed ID: 18782627 [TBL] [Abstract][Full Text] [Related]