BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 19932088)

  • 21. [Biological significance of amino acids deletion in NA stalk of H5N1 avian influenza virus].
    Wang QZ; Long JX; Hu SL; Wu YT; Liu XF
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):542-6. PubMed ID: 17037051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genesis of a pandemic influenza virus.
    Russell CJ; Webster RG
    Cell; 2005 Nov; 123(3):368-71. PubMed ID: 16269328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2.
    Li J; Ishaq M; Prudence M; Xi X; Hu T; Liu Q; Guo D
    Virus Res; 2009 Sep; 144(1-2):123-9. PubMed ID: 19393699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice.
    D'Aoust MA; Lavoie PO; Couture MM; Trépanier S; Guay JM; Dargis M; Mongrand S; Landry N; Ward BJ; Vézina LP
    Plant Biotechnol J; 2008 Dec; 6(9):930-40. PubMed ID: 19076615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid subtyping of H9N2 influenza virus by a triple reverse transcription polymerase chain reaction.
    Chen HT; Zhang J; Ma LN; Ma YP; Ding YZ; Wang M; Liu XT; Zhang YG; Liu YS
    J Virol Methods; 2009 Jun; 158(1-2):58-62. PubMed ID: 19428570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of expression of rna polymerase with small interfering RNAs targeting a conserved motif in the respective viral genes in viruses of the family Flaviviridae.
    Xu Z; Li X; Liu R; Si Y; Sun M; Jin M; Chen H; Qian P
    Acta Virol; 2007; 51(3):195-201. PubMed ID: 18076310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA interference of avian influenza virus H5N1 by inhibiting viral mRNA with siRNA expression plasmids.
    Zhou K; He H; Wu Y; Duan M
    J Biotechnol; 2008 Jun; 135(2):140-4. PubMed ID: 18456361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.
    Taylor J; McPhie K; Druce J; Birch C; Dwyer DE
    J Med Virol; 2009 Nov; 81(11):1918-22. PubMed ID: 19774693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virology. Clues to the virulence of H5N1 viruses in humans.
    Krug RM
    Science; 2006 Mar; 311(5767):1562-3. PubMed ID: 16543447
    [No Abstract]   [Full Text] [Related]  

  • 30. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase.
    Kim YG; Yoo JS; Kim JH; Kim CM; Oh JW
    BMC Mol Biol; 2007 Jul; 8():59. PubMed ID: 17623110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo and in vitro expression analysis of the RNA-dependent RNA polymerase of Citrus tristeza virus.
    Cevik B; Lee RF; Niblett CL
    Arch Virol; 2008; 153(2):315-21. PubMed ID: 18193157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity.
    Wang Q; Weng L; Tian X; Counor D; Sun J; Mao Y; Deubel V; Okada H; Toyoda T
    Biochim Biophys Acta; 2012 May; 1819(5):411-8. PubMed ID: 22285573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AZT acts as an anti-influenza nucleotide triphosphate targeting the catalytic site of A/PR/8/34/H1N1 RNA dependent RNA polymerase.
    Pagadala NS
    J Comput Aided Mol Des; 2019 Apr; 33(4):387-404. PubMed ID: 30739239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemistry. Visualizing the influenza genome.
    Tao YJ; Zheng W
    Science; 2012 Dec; 338(6114):1545-6. PubMed ID: 23180772
    [No Abstract]   [Full Text] [Related]  

  • 35. Fluorescent primer-based in vitro transcription system of viral RNA-dependent RNA polymerases.
    Wang Q; Weng L; Jiang H; Zhang S; Toyoda T
    Anal Biochem; 2013 Feb; 433(2):92-4. PubMed ID: 23103398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influenza-C-virion-associated RNA-dependent RNA-polymerase activity.
    Nagele A; Meier-Ewert H
    Biosci Rep; 1984 Aug; 4(8):703-6. PubMed ID: 6548651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New Insight into Metal Ion-Driven Catalysis of Nucleic Acids by Influenza PA-Nter.
    Kotlarek D; Worch R
    PLoS One; 2016; 11(6):e0156972. PubMed ID: 27300442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the influenza virus transcriptase by affinity-labeling with pyridoxal 5'-phosphate.
    Romanos MA; Hay AJ
    Virology; 1984 Jan; 132(1):110-7. PubMed ID: 6198801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic properties of Qbeta replicase, an RNA dependent RNA polymerase.
    Nakaishi T; Iio K; Yamamoto K; Urabe I; Yomo T
    J Biosci Bioeng; 2002; 93(3):322-7. PubMed ID: 16233208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influenza RNA-Dependent RNA Polymerase (RdRp) Inhibitors: Potential New Therapy for Influenza Treatment.
    Abdel-Magid AF
    ACS Med Chem Lett; 2013 Dec; 4(12):1133-4. PubMed ID: 24900618
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.