BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 1993211)

  • 21. Pyridoxal phosphate-induced dissociation of the succinate: ubiquinone reductase.
    Choudhry ZM; Gavrikova EV; Kotlyar AB; Tushurashvili PR; Vinogradov AD
    FEBS Lett; 1985 Mar; 182(1):171-5. PubMed ID: 3972121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An antimycin-insensitive succinate-cytochrome c reductase activity in pure reconstitutively active succinate dehydrogenase.
    Yu L; McCurley JP; Yu CA
    Biochim Biophys Acta; 1987 Aug; 893(1):75-82. PubMed ID: 3038186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of succinate-ubiquinone reductase in substrate mixture.
    Yang Y; Xu JX; Zhou HM
    Int J Biochem Cell Biol; 1998 Oct; 30(10):1147-52. PubMed ID: 9785479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Succinate-ubiquinone reductase site of the respiratory chain].
    Vinogradov AD
    Biokhimiia; 1986 Dec; 51(12):1944-73. PubMed ID: 3542059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1980 Nov; 593(1):24-38. PubMed ID: 7426645
    [No Abstract]   [Full Text] [Related]  

  • 26. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase).
    Miyadera H; Shiomi K; Ui H; Yamaguchi Y; Masuma R; Tomoda H; Miyoshi H; Osanai A; Kita K; Omura S
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):473-7. PubMed ID: 12515859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of ubiquinone and vitamin K3 with mitochondrial succinate-ubiquinone oxidoreductase.
    Kotlyar AB; Gutman M; Ackrell BA
    Biochem Biophys Res Commun; 1992 Aug; 186(3):1656-62. PubMed ID: 1510689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification of prostaglandin H synthase with diethyl pyrocarbonate.
    Zhang X; Tsai AL; Kulmacz RJ
    Biochemistry; 1992 Mar; 31(9):2528-38. PubMed ID: 1312350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of quinone-binding and heme-ligating residues of the smallest membrane-anchoring subunit (QPs3) of bovine heart mitochondrial succinate:ubiquinone reductase.
    Shenoy SK; Yu L; Yu Ca
    J Biol Chem; 1999 Mar; 274(13):8717-22. PubMed ID: 10085111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptides from complex II active in reconstitution of succinate-ubiquinone reductase.
    Ackrell BA; Ball MB; Kearney EB
    J Biol Chem; 1980 Apr; 255(7):2761-9. PubMed ID: 7358707
    [No Abstract]   [Full Text] [Related]  

  • 31. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.
    Kita K; Takamiya S; Furushima R; Ma YC; Suzuki H; Ozawa T; Oya H
    Biochim Biophys Acta; 1988 Sep; 935(2):130-40. PubMed ID: 2843227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of malate by the mitochondrial succinate-ubiquinone reductase.
    Belikova YO; Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1988 Oct; 936(1):1-9. PubMed ID: 2902878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The smallest membrane anchoring subunit (QPs3) of bovine heart mitochondrial succinate-ubiquinone reductase. Cloning, sequencing, topology, and Q-binding domain.
    Shenoy SK; Yu L; Yu CA
    J Biol Chem; 1997 Jul; 272(28):17867-72. PubMed ID: 9211943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding.
    Yang X; Yu L; He D; Yu CA
    J Biol Chem; 1998 Nov; 273(48):31916-23. PubMed ID: 9822661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the succinate dehydrogenating system. II. Reconstitution of succinate-ubiquinone reductase from the soluble components.
    Vinogradov AD; Gavrikov VG; Gavrikova EV
    Biochim Biophys Acta; 1980 Aug; 592(1):13-27. PubMed ID: 7397135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-site property of thenoyltrifluoroacetone inhibiting succinate-ubiquinone reductase.
    Xu JX; King TE
    Sci China B; 1992 Feb; 35(2):162-8. PubMed ID: 1581000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY; Yu L; Yu CA
    J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase.
    Adak S; Bandyopadhyay D; Bandyopadhyay U; Banerjee RK
    Mol Cell Biochem; 2001 Feb; 218(1-2):1-11. PubMed ID: 11330823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subunit 8 of the Saccharomyces cerevisiae cytochrome bc1 complex interacts with succinate-ubiquinone reductase complex.
    Bruel C; Brasseur R; Trumpower BL
    J Bioenerg Biomembr; 1996 Feb; 28(1):59-68. PubMed ID: 8786239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.