These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides. Jakschitz TA; Huck CW; Lubbad S; Bonn GK J Chromatogr A; 2007 Apr; 1147(1):53-8. PubMed ID: 17350637 [TBL] [Abstract][Full Text] [Related]
6. Optimization of poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based capillary monoliths for separation of low, medium, and high molecular-weight analytes. Lubbad SH J Chromatogr A; 2016 Apr; 1443():126-35. PubMed ID: 27016117 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of lauryl methacrylate-based monolithic microbore column for reversed-phase liquid chromatography. Shu S; Kobayashi H; Kojima N; Sabarudin A; Umemura T J Chromatogr A; 2011 Aug; 1218(31):5228-34. PubMed ID: 21703629 [TBL] [Abstract][Full Text] [Related]
8. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity. Nischang I J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891 [TBL] [Abstract][Full Text] [Related]
9. High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. Trojer L; Bisjak CP; Wieder W; Bonn GK J Chromatogr A; 2009 Aug; 1216(35):6303-9. PubMed ID: 19632682 [TBL] [Abstract][Full Text] [Related]
10. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. Greiderer A; Trojer L; Huck CW; Bonn GK J Chromatogr A; 2009 Nov; 1216(45):7747-54. PubMed ID: 19762035 [TBL] [Abstract][Full Text] [Related]
11. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. Nischang I; Teasdale I; Brüggemann O J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011 [TBL] [Abstract][Full Text] [Related]
12. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. Hara T; Mascotto S; Weidmann C; Smarsly BM J Chromatogr A; 2011 Jun; 1218(23):3624-35. PubMed ID: 21546027 [TBL] [Abstract][Full Text] [Related]
13. Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. Nesterenko EP; Nesterenko PN; Connolly D; Lacroix F; Paull B J Chromatogr A; 2010 Apr; 1217(14):2138-46. PubMed ID: 20189186 [TBL] [Abstract][Full Text] [Related]
14. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography. Niu W; Wang L; Bai L; Yang G J Chromatogr A; 2013 Jul; 1297():131-7. PubMed ID: 23726080 [TBL] [Abstract][Full Text] [Related]
16. Effect of monomer mixture composition on structure and chromatographic properties of poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic rod columns for separation of small molecules. Smirnov KN; Dyatchkov IA; Telnov MV; Pirogov AV; Shpigun OA J Chromatogr A; 2011 Jul; 1218(30):5010-9. PubMed ID: 21194698 [TBL] [Abstract][Full Text] [Related]
17. Influence of different polymerisation parameters on the separation efficiency of monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns. Bisjak CP; Trojer L; Lubbad SH; Wieder W; Bonn GK J Chromatogr A; 2007 Jun; 1154(1-2):269-76. PubMed ID: 17449047 [TBL] [Abstract][Full Text] [Related]
18. Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules. Li Y; Tolley HD; Lee ML J Chromatogr A; 2011 Mar; 1218(10):1399-408. PubMed ID: 21295783 [TBL] [Abstract][Full Text] [Related]