These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 19932487)
1. A facile method for preparation of gold nanoparticles with high SERS efficiency in the presence of inositol hexaphosphate. Zhu X; Yang H; Wang N; Zhang R; Song W; Sun Y; Duan G; Ding W; Zhang Z J Colloid Interface Sci; 2010 Feb; 342(2):571-4. PubMed ID: 19932487 [TBL] [Abstract][Full Text] [Related]
2. Preparation of gold-tellurium hybrid nanomaterials for surface-enhanced Raman spectroscopy. Lin ZH; Chang HT Langmuir; 2008 Jan; 24(2):365-7. PubMed ID: 18081332 [TBL] [Abstract][Full Text] [Related]
3. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Jung HY; Park YK; Park S; Kim SK Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609 [TBL] [Abstract][Full Text] [Related]
5. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Mu C; Zhang JP; Xu D Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166 [TBL] [Abstract][Full Text] [Related]
6. One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis. Lee KY; Hwang J; Lee YW; Kim J; Han SW J Colloid Interface Sci; 2007 Dec; 316(2):476-81. PubMed ID: 17727872 [TBL] [Abstract][Full Text] [Related]
7. Uniform gold nanoarray formed by controlled IP6 micelles for chemical mapping. Chen X; Wen Y; Wang N; Gu K; Yang H Nanotechnology; 2011 May; 22(20):205603. PubMed ID: 21444953 [TBL] [Abstract][Full Text] [Related]
8. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Lu L; Ai K; Ozaki Y Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060 [TBL] [Abstract][Full Text] [Related]
10. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Polavarapu L; Xu QH Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate. Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257 [TBL] [Abstract][Full Text] [Related]
12. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra. Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393 [TBL] [Abstract][Full Text] [Related]
13. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. Sztainbuch IW J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200 [TBL] [Abstract][Full Text] [Related]
14. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
15. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe. Piao L; Park S; Lee HB; Kim K; Kim J; Chung TD Anal Chem; 2010 Jan; 82(1):447-51. PubMed ID: 19994858 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of core-shell surface-enhanced Raman tags for bioimaging. Liu X; Knauer M; Ivleva NP; Niessner R; Haisch C Anal Chem; 2010 Jan; 82(1):441-6. PubMed ID: 19957963 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Song C; Wang Z; Zhang R; Yang J; Tan X; Cui Y Biosens Bioelectron; 2009 Dec; 25(4):826-31. PubMed ID: 19765972 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689 [TBL] [Abstract][Full Text] [Related]
19. [Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation]. Li LM; Fang PP; Yang ZL; Huang WD; Wu DY; Ren B; Tian ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1222-6. PubMed ID: 19650458 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure. Hossain MK; Huang GG; Kaneko T; Ozaki Y Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]