These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
788 related articles for article (PubMed ID: 19932506)
1. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
3. Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation. Lin X; Li PJ; Zhou QX; Xu HX; Zhang HR J Environ Sci (China); 2004; 16(6):987-90. PubMed ID: 15900734 [TBL] [Abstract][Full Text] [Related]
4. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Zhang Z; Zhou Q; Peng S; Cai Z Sci Total Environ; 2010 Oct; 408(22):5600-5. PubMed ID: 20810149 [TBL] [Abstract][Full Text] [Related]
5. The application of bioassays as indicators of petroleum-contaminated soil remediation. Płaza G; Nałecz-Jawecki G; Ulfig K; Brigmon RL Chemosphere; 2005 Apr; 59(2):289-96. PubMed ID: 15722101 [TBL] [Abstract][Full Text] [Related]
6. Relationship between soil microbial diversity and bioremediation process at an oil refinery. Płaza G; Ulfig K; Brigmon RL Acta Microbiol Pol; 2003; 52(2):173-82. PubMed ID: 14594404 [TBL] [Abstract][Full Text] [Related]
7. Degradation of crude oil in the rhizosphere of Sorghum bicolor. Banks MK; Kulakow P; Schwab AP; Chen Z; Rathbone K Int J Phytoremediation; 2003; 5(3):225-34. PubMed ID: 14750430 [TBL] [Abstract][Full Text] [Related]
8. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. Maciá-Vicente JG; Jansson HB; Abdullah SK; Descals E; Salinas J; Lopez-Llorca LV FEMS Microbiol Ecol; 2008 Apr; 64(1):90-105. PubMed ID: 18248439 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Alarcón A; Davies FT; Autenrieth RL; Zuberer DA Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Peng S; Zhou Q; Cai Z; Zhang Z J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069 [TBL] [Abstract][Full Text] [Related]
12. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Brandt R; Merkl N; Schultze-Kraft R; Infante C; Broll G Int J Phytoremediation; 2006; 8(4):273-84. PubMed ID: 17305302 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids. Merkl N; Schultze-Kraft R; Infante C Environ Pollut; 2005 Nov; 138(1):86-91. PubMed ID: 15894414 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Jones RK; Sun WH; Tang CS; Robert FM Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638 [TBL] [Abstract][Full Text] [Related]
15. Selecting plants and nitrogen rates to vegetate crude-oil-contaminated soil. Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM Int J Phytoremediation; 2006; 8(4):285-97. PubMed ID: 17305303 [TBL] [Abstract][Full Text] [Related]
16. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Franco-Ramírez A; Ferrera-Cerrato R; Varela-Fregoso L; Pérez-Moreno J; Alarcón A J Basic Microbiol; 2007 Oct; 47(5):378-83. PubMed ID: 17910101 [TBL] [Abstract][Full Text] [Related]
17. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Cai Z; Zhou Q; Peng S; Li K J Hazard Mater; 2010 Nov; 183(1-3):731-7. PubMed ID: 20724074 [TBL] [Abstract][Full Text] [Related]
18. Investigation of microbes in the rhizosphere of selected trees for the rhizoremediation of hydrocarbon-contaminated soils. Yateem A; Al-Sharrah T; Bin-Haji A Int J Phytoremediation; 2008; 10():311-24. PubMed ID: 19260216 [TBL] [Abstract][Full Text] [Related]
19. Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in petroleum-contaminated soil. de Farias V; Maranho LT; de Vasconcelos EC; da Silva Carvalho Filho MA; Lacerda LG; Azevedo JA; Pandey A; Soccol CR Appl Biochem Biotechnol; 2009 Apr; 157(1):10-22. PubMed ID: 19277490 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation: an overview of metallic ion decontamination from soil. Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]