BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 19932510)

  • 1. Effect of Zinc (II) on the interactions of bovine serum albumin with flavonols bearing different number of hydroxyl substituent on B-ring.
    Cao S; Jiang X; Chen J
    J Inorg Biochem; 2010 Feb; 104(2):146-52. PubMed ID: 19932510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A steady-state and time-resolved fluorescence, circular dichroism study on the binding of myricetin to bovine serum albumin.
    Tian J; Zhao Y; Liu X; Zhao S
    Luminescence; 2009; 24(6):386-93. PubMed ID: 19480002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin.
    Xiao J; Suzuki M; Jiang X; Chen X; Yamamoto K; Ren F; Xu M
    J Agric Food Chem; 2008 Apr; 56(7):2350-6. PubMed ID: 18333618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin.
    Hu X; Cui S; Liu Jq
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(2):548-53. PubMed ID: 20615751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the interaction between a new Schiff-base complex and bovine serum albumin by fluorescence spectroscopy.
    Xiang Y; Wu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(2):430-6. PubMed ID: 20598629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols.
    Moreira MR; Kanashiro A; Kabeya LM; Polizello AC; Azzolini AE; Curti C; Oliveira CA; T-do Amaral A; Lucisano-Valim YM
    Life Sci; 2007 Jul; 81(4):317-26. PubMed ID: 17610907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food-drug interference.
    Zhang Y; Shi S; Chen X; Zhang W; Huang K; Peng M
    J Agric Food Chem; 2011 Aug; 59(15):8499-506. PubMed ID: 21732691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the glycosylation of flavonoids on interaction with protein.
    Cao H; Wu D; Wang H; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):972-5. PubMed ID: 19493695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study.
    Papadopoulou A; Green RJ; Frazier RA
    J Agric Food Chem; 2005 Jan; 53(1):158-63. PubMed ID: 15631523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect.
    Zhang Y; Shi S; Sun X; Xiong X; Peng M
    J Inorg Biochem; 2011 Dec; 105(12):1529-37. PubMed ID: 22071075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring A.
    Xiao J; Cao H; Wang Y; Yamamoto K; Wei X
    Mol Nutr Food Res; 2010 Jul; 54 Suppl 2():S253-60. PubMed ID: 20306480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of flavonoids bearing different substituents on ring C and their cu2+ complex binding with bovine serum albumin: structure-affinity relationship aspects.
    Shi S; Zhang Y; Chen X; Peng M
    J Agric Food Chem; 2011 Oct; 59(19):10761-9. PubMed ID: 21863893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of morin-zinc(II) complex and its interaction with serum albumin.
    Zhang HX; Mei P
    Biol Trace Elem Res; 2011 Nov; 143(2):677-87. PubMed ID: 21113687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin.
    Wang YQ; Zhang HM; Zhang GC; Tao WH; Fei ZH; Liu ZT
    J Pharm Biomed Anal; 2007 Apr; 43(5):1869-75. PubMed ID: 17280811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bovine serum albumin nanoparticle promotes the stability of quercetin in simulated intestinal fluid.
    Fang R; Hao R; Wu X; Li Q; Leng X; Jing H
    J Agric Food Chem; 2011 Jun; 59(11):6292-8. PubMed ID: 21542648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinctive antioxidant and antiinflammatory effects of flavonols.
    Wang L; Tu YC; Lian TW; Hung JT; Yen JH; Wu MJ
    J Agric Food Chem; 2006 Dec; 54(26):9798-804. PubMed ID: 17177504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Cu2+ or Fe3+ on the noncovalent binding of rutin with bovine serum albumin by spectroscopic analysis.
    Li D; Zhu M; Xu C; Chen J; Ji B
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):74-9. PubMed ID: 20961801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence.
    Gutzeit HO; Henker Y; Kind B; Franz A
    Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.