BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 19932537)

  • 21. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of chloride salts in chemically enhanced phytoextraction of heavy metals from a contaminated agricultural soil.
    Komárek M; Tlustos P; Száková J; Chrastný V
    Bull Environ Contam Toxicol; 2007 Feb; 78(2):176-80. PubMed ID: 17401509
    [No Abstract]   [Full Text] [Related]  

  • 23. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process.
    Luo CL; Shen ZG; Li XD
    Int J Phytoremediation; 2007; 9(3):181-96. PubMed ID: 18246767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments.
    Clemente R; Walker DJ; Bernal MP
    Environ Pollut; 2005 Nov; 138(1):46-58. PubMed ID: 15894412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil.
    Wu LH; Sun XF; Luo YM; Xing XR; Christie P
    Int J Phytoremediation; 2007; 9(3):227-41. PubMed ID: 18246770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates.
    Quartacci MF; Irtelli B; Gonnelli C; Gabbrielli R; Navari-Izzo F
    Environ Pollut; 2009 Oct; 157(10):2697-703. PubMed ID: 19497650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil.
    Wang FY; Lin XG; Yin R
    Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chelant-aided enhancement of lead mobilization in residential soils.
    Sarkar D; Andra SS; Saminathan SK; Datta R
    Environ Pollut; 2008 Dec; 156(3):1139-48. PubMed ID: 18479792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the phytoextraction potential of high biomass crop plants.
    Hernández-Allica J; Becerril JM; Garbisu C
    Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico.
    Figueroa JA; Wrobel K; Afton S; Caruso JA; Corona Felix Gutierrez J; Wrobel K
    Chemosphere; 2008 Feb; 70(11):2084-91. PubMed ID: 17931685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley.
    Ruiz E; Alonso-Azcárate J; Rodríguez L
    Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance.
    Liu D; Islam E; Li T; Yang X; Jin X; Mahmood Q
    J Hazard Mater; 2008 May; 153(1-2):114-22. PubMed ID: 17904736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.