BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 19932748)

  • 1. Evidence for NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone-dependent redox cycling via plasma membrane electron transport: A sensitive cellular assay for NQO1.
    Tan AS; Berridge MV
    Free Radic Biol Med; 2010 Feb; 48(3):421-9. PubMed ID: 19932748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of NAD(P)H:quinone oxidoreductase in quinone-mediated p21 induction in human colon carcinoma cells.
    Qiu XB; Cadenas E
    Arch Biochem Biophys; 1997 Oct; 346(2):241-51. PubMed ID: 9343371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger.
    Siegel D; Gustafson DL; Dehn DL; Han JY; Boonchoong P; Berliner LJ; Ross D
    Mol Pharmacol; 2004 May; 65(5):1238-47. PubMed ID: 15102952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells.
    González-Aragón D; Ariza J; Villalba JM
    Biochem Pharmacol; 2007 Feb; 73(3):427-39. PubMed ID: 17123468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of NADPH cytochrome P450 reductase in activation of RH1.
    Begleiter A; Leith MK; Patel D; Hasinoff BB
    Cancer Chemother Pharmacol; 2007 Oct; 60(5):713-23. PubMed ID: 17256129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.
    Cullen JJ; Hinkhouse MM; Grady M; Gaut AW; Liu J; Zhang YP; Weydert CJ; Domann FE; Oberley LW
    Cancer Res; 2003 Sep; 63(17):5513-20. PubMed ID: 14500388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD(P)H:quinone oxidoreductase-1-dependent and -independent cytotoxicity of potent quinone Cdc25 phosphatase inhibitors.
    Han Y; Shen H; Carr BI; Wipf P; Lazo JS; Pan SS
    J Pharmacol Exp Ther; 2004 Apr; 309(1):64-70. PubMed ID: 14718602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron deficiency aggravates DMNQ-induced cytotoxicity via redox cycling in kidney-derived cells.
    Yoshihara D; Fujiwara N; Eguchi H; Sakiyama H; Suzuki K
    Free Radic Res; 2022; 56(7-8):544-554. PubMed ID: 36469660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by aziridinylbenzoquinones RH1 and MeDZQ.
    Nemeikaite-Ceniene A; Dringeliene A; Sarlauskas J; Cenas N
    Acta Biochim Pol; 2005; 52(4):937-41. PubMed ID: 15940348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.
    Gray JP; Karandrea S; Burgos DZ; Jaiswal AA; Heart EA
    Toxicol Lett; 2016 Nov; 262():1-11. PubMed ID: 27558805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The highly expressed and inducible endogenous NAD(P)H:quinone oxidoreductase 1 in cardiovascular cells acts as a potential superoxide scavenger.
    Zhu H; Jia Z; Mahaney JE; Ross D; Misra HP; Trush MA; Li Y
    Cardiovasc Toxicol; 2007; 7(3):202-11. PubMed ID: 17901563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular density and cell type are the key factors in growth inhibition induced by 2,5bis [1-aziridinyl]-1,4 benzoquinone (DZQ).
    Córdoba-Pedregosa Mdel C; Villalba JM; González-Aragón D; Bello RI; Alcaín FJ
    Anticancer Res; 2006; 26(5A):3535-40. PubMed ID: 17094478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical, cytotoxic, and genotoxic effects of ES936, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1, in cellular systems.
    Dehn DL; Siegel D; Swann E; Moody CJ; Ross D
    Mol Pharmacol; 2003 Sep; 64(3):714-20. PubMed ID: 12920209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells.
    Watanabe N; Forman HJ
    Arch Biochem Biophys; 2003 Mar; 411(1):145-57. PubMed ID: 12590933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase.
    Wu K; Knox R; Sun XZ; Joseph P; Jaiswal AK; Zhang D; Deng PS; Chen S
    Arch Biochem Biophys; 1997 Nov; 347(2):221-8. PubMed ID: 9367528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased tumor necrosis factor-alpha sensitivity of MCF-7 cells transfected with NAD(P)H:quinone reductase.
    Siemankowski LM; Morreale J; Butts BD; Briehl MM
    Cancer Res; 2000 Jul; 60(13):3638-44. PubMed ID: 10910079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.
    Gray JP; Eisen T; Cline GW; Smith PJ; Heart E
    Am J Physiol Endocrinol Metab; 2011 Jul; 301(1):E113-21. PubMed ID: 21505151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: from synthetic organic chemistry to compounds with anticancer potential.
    Colucci MA; Moody CJ; Couch GD
    Org Biomol Chem; 2008 Feb; 6(4):637-56. PubMed ID: 18264564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.