These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19932989)

  • 1. Unobtrusive and ubiquitous in-home monitoring: a methodology for continuous assessment of gait velocity in elders.
    Hagler S; Austin D; Hayes TL; Kaye J; Pavel M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):813-20. PubMed ID: 19932989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One walk a year to 1000 within a year: continuous in-home unobtrusive gait assessment of older adults.
    Kaye J; Mattek N; Dodge H; Buracchio T; Austin D; Hagler S; Pavel M; Hayes T
    Gait Posture; 2012 Feb; 35(2):197-202. PubMed ID: 22047773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors.
    Hayes TL; Hagler S; Austin D; Kaye J; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7248-51. PubMed ID: 19965096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of testing protocol on recorded gait speed.
    Sustakoski A; Perera S; VanSwearingen JM; Studenski SA; Brach JS
    Gait Posture; 2015 Jan; 41(1):329-31. PubMed ID: 25468684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent Validity of the Zeno Walkway for Measuring Spatiotemporal Gait Parameters in Older Adults.
    Vallabhajosula S; Humphrey SK; Cook AJ; Freund JE
    J Geriatr Phys Ther; 2019; 42(3):E42-E50. PubMed ID: 29286982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unobtrusive monitoring of the longitudinal evolution of in-home gait velocity data with applications to elder care.
    Austin D; Hayes TL; Kaye J; Mattek N; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6495-8. PubMed ID: 22255826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a passive low-cost in-home gait assessment system for older adults.
    Wang F; Stone E; Skubic M; Keller JM; Abbott C; Rantz M
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):346-55. PubMed ID: 24235111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning Laser Rangefinders for the Unobtrusive Monitoring of Gait Parameters in Unsupervised Settings.
    Fudickar S; Stolle C; Volkening N; Hein A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.
    Wang F; Skubic M; Rantz M; Cuddihy PE
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2434-43. PubMed ID: 24771566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based inference of cognitive processes from unobtrusive gait velocity measurements.
    Austin D; Leen T; Hayes TL; Kaye J; Jimison H; Mattek N; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5230-3. PubMed ID: 21096044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-task gait speed assessments with an electronic walkway and a stopwatch in older adults. A reliability study.
    Montero-Odasso M; Sarquis-Adamson Y; Kamkar N; Pieruccini-Faria F; Bray N; Cullen S; Mahon J; Titus J; Camicioli R; Borrie MJ; Bherer L; Speechley M
    Exp Gerontol; 2020 Dec; 142():111102. PubMed ID: 33017671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of passive infrared sensors for monitoring occupancy pattern.
    Kaushik AR; Celler BG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5257-60. PubMed ID: 17945888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsiveness of 2 procedures for measurement of temporal and spatial gait parameters in older adults.
    Youdas JW; Childs KB; McNeil ML; Mueller AC; Quilter CM; Hollman JH
    PM R; 2010 Jun; 2(6):537-43. PubMed ID: 20630440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway.
    Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B
    J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decline in gait performance detected by an electronic walkway system in 907 older adults of the population-based KORA-Age study.
    Autenrieth CS; Karrasch S; Heier M; Gorzelniak L; Ladwig KH; Peters A; Döring A
    Gerontology; 2013; 59(2):165-73. PubMed ID: 23127986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease.
    Mariani B; Jiménez MC; Vingerhoets FJ; Aminian K
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):155-8. PubMed ID: 23268531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.