These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19933165)

  • 1. CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes.
    Venancio TM; Aravind L
    Bioinformatics; 2010 Jan; 26(2):149-52. PubMed ID: 19933165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palmitoylation of CYSTM (CYSPD) proteins in yeast.
    Giolito ML; Bigliani G; Meinero R; Taubas JV
    J Biol Chem; 2024 Feb; 300(2):105609. PubMed ID: 38159851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CYSTM, a Novel Non-Secreted Cysteine-Rich Peptide Family, Involved in Environmental Stresses in Arabidopsis thaliana.
    Xu Y; Yu Z; Zhang D; Huang J; Wu C; Yang G; Yan K; Zhang S; Zheng C
    Plant Cell Physiol; 2018 Feb; 59(2):423-438. PubMed ID: 29272523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Zvonarev A; Ledova L; Ryazanova L; Valiakhmetov A; Farofonova V; Kulakovskaya T
    Genes (Basel); 2023 Apr; 14(5):. PubMed ID: 37239347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress.
    Ding Q; Liu H; Lin R; Wang Z; Jian S; Zhang M
    Plant Physiol Biochem; 2023 Jul; 200():107786. PubMed ID: 37257408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis cysteine-rich trans-membrane module (CYSTM) small proteins play a protective role mainly against heat and UV stresses.
    Joshi JR; Singh V; Friedman H
    Funct Plant Biol; 2020 Feb; 47(3):195-202. PubMed ID: 32007127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PoreLogo: a new tool to analyse, visualize and compare channels in transmembrane proteins.
    Oliva R; Thornton JM; Pellegrini-Calace M
    Bioinformatics; 2009 Dec; 25(23):3183-4. PubMed ID: 19762348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of Homo sapiens, Arabidopsis thaliana, and Saccharomyces cerevisiae reveals novel attributes of tail-anchored membrane proteins.
    Brito GC; Schormann W; Gidda SK; Mullen RT; Andrews DW
    BMC Genomics; 2019 Nov; 20(1):835. PubMed ID: 31711414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cpipe: a comprehensive computational platform for sequence and structure-based analyses of Cysteine residues.
    Soylu I; Marino SM
    Bioinformatics; 2017 Aug; 33(15):2395-2396. PubMed ID: 28369166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online tools for predicting integral membrane proteins.
    Bigelow H; Rost B
    Methods Mol Biol; 2009; 528():3-23. PubMed ID: 19153681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications.
    Cvicek V; Goddard WA; Abrol R
    PLoS Comput Biol; 2016 Mar; 12(3):e1004805. PubMed ID: 27028541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaTM - a consensus method for transmembrane protein topology prediction.
    Klammer M; Messina DN; Schmitt T; Sonnhammer EL
    BMC Bioinformatics; 2009 Sep; 10():314. PubMed ID: 19785723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local Similarity Matrix for Cysteine Disulfide Connectivity Prediction from Protein Sequences.
    Mapes NJ; Rodriguez C; Chowriappa P; Dua S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1276-1289. PubMed ID: 30640622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier.
    Sapay N; Guermeur Y; Deléage G
    BMC Bioinformatics; 2006 May; 7():255. PubMed ID: 16704727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Families of membranous proteins can be characterized by the amino acid composition of their transmembrane domains.
    Sadka T; Linial M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i378-86. PubMed ID: 15961481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes.
    DeSalle R; Mares R; Garcia-España A
    Mol Phylogenet Evol; 2010 Jul; 56(1):486-91. PubMed ID: 20171294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter.
    Cserzo M; Eisenhaber F; Eisenhaber B; Simon I
    Bioinformatics; 2004 Jan; 20(1):136-7. PubMed ID: 14693825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PROCAIN server for remote protein sequence similarity search.
    Wang Y; Sadreyev RI; Grishin NV
    Bioinformatics; 2009 Aug; 25(16):2076-7. PubMed ID: 19497935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.