These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 19933343)
21. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Tang R; Weng C; Peng X; Han Y Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842 [TBL] [Abstract][Full Text] [Related]
22. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Jugder BE; Chen Z; Ping DT; Lebhar H; Welch J; Marquis CP Microb Cell Fact; 2015 Mar; 14():42. PubMed ID: 25880663 [TBL] [Abstract][Full Text] [Related]
23. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. Kutralam-Muniasamy G; Peréz-Guevara F World J Microbiol Biotechnol; 2018 May; 34(6):79. PubMed ID: 29799066 [TBL] [Abstract][Full Text] [Related]
24. Cupriavidus necator H16 Uses Flavocytochrome Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655 [TBL] [Abstract][Full Text] [Related]
25. Enzymatic oxidation of isethionate to sulfoacetaldehyde in bacterial extract. Kondo H; Niki H; Takahashi S; Ishimoto M J Biochem; 1977 Jun; 81(6):1911-6. PubMed ID: 197072 [TBL] [Abstract][Full Text] [Related]
26. Identification and characterization of L- and D-lactate-inducible systems from Escherichia coli MG1655, Cupriavidus necator H16 and Pseudomonas species. Augustiniene E; Malys N Sci Rep; 2022 Feb; 12(1):2123. PubMed ID: 35136142 [TBL] [Abstract][Full Text] [Related]
27. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Clément P; Pieper DH; González B Microbiology (Reading); 2001 Aug; 147(Pt 8):2141-2148. PubMed ID: 11495991 [TBL] [Abstract][Full Text] [Related]
28. Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. Handrick R; Reinhardt S; Jendrossek D J Bacteriol; 2000 Oct; 182(20):5916-8. PubMed ID: 11004196 [TBL] [Abstract][Full Text] [Related]
29. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Mayer J; Huhn T; Habeck M; Denger K; Hollemeyer K; Cook AM Microbiology (Reading); 2010 May; 156(Pt 5):1556-1564. PubMed ID: 20150239 [TBL] [Abstract][Full Text] [Related]
30. Exchange of isethionate between blood and tissues in adult and 7-day-old mice. Kumpulainen E; Pesonen I; Lähdesmäki P Acta Physiol Scand; 1982 Mar; 114(3):419-23. PubMed ID: 6291329 [TBL] [Abstract][Full Text] [Related]
31. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. Orita I; Iwazawa R; Nakamura S; Fukui T J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784 [TBL] [Abstract][Full Text] [Related]
32. A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Belchik SM; Schaeffer SM; Hasenoehrl S; Xun L Biodegradation; 2010 Jun; 21(3):431-9. PubMed ID: 19937267 [TBL] [Abstract][Full Text] [Related]
33. The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate. Trefault N; Clément P; Manzano M; Pieper DH; González B FEMS Microbiol Lett; 2002 Jun; 212(1):95-100. PubMed ID: 12076793 [TBL] [Abstract][Full Text] [Related]
34. Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. Yin Y; Zhou NY Curr Microbiol; 2010 Nov; 61(5):471-6. PubMed ID: 20386911 [TBL] [Abstract][Full Text] [Related]