BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1993357)

  • 1. Host and bacterial factors control the Mycobacterium avium-induced chronic peritoneal granulocytosis in mice.
    Appelberg R; Pedrosa JM; Silva MT
    Clin Exp Immunol; 1991 Feb; 83(2):231-6. PubMed ID: 1993357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control of Mycobacterium avium infection in mice.
    Appelberg R; Sarmento AM
    Clin Exp Immunol; 1990 Jun; 80(3):324-31. PubMed ID: 2115416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjuvant treatment increases the resistance to Mycobacterium avium infection of mycobacteria-susceptible BALB/c mice.
    Castro AP; Aguas AP; Silva MT
    Clin Exp Immunol; 1993 Jun; 92(3):466-72. PubMed ID: 8513578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice.
    Castro AG; Minóprio P; Appelberg R
    Immunology; 1995 Aug; 85(4):556-61. PubMed ID: 7558149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T cell-dependent chronic neutrophilia during mycobacterial infections.
    Appelberg R; Silva MT
    Clin Exp Immunol; 1989 Dec; 78(3):478-83. PubMed ID: 2575473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction and expression of protective T cells during Mycobacterium avium infections in mice.
    Appelberg R; Pedrosa J
    Clin Exp Immunol; 1992 Mar; 87(3):379-85. PubMed ID: 1544223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between virulence of Mycobacterium avium strains and induction of tumor necrosis factor alpha production in infected mice and in in vitro-cultured mouse macrophages.
    Sarmento AM; Appelberg R
    Infect Immun; 1995 Oct; 63(10):3759-64. PubMed ID: 7558277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of phagosome-lysosome fusion in restriction of Mycobacterium avium growth in bone marrow macrophages from genetically resistant mice.
    de Chastellier C; Fréhel C; Offredo C; Skamene E
    Infect Immun; 1993 Sep; 61(9):3775-84. PubMed ID: 8359899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophil-macrophage cooperation in the host defence against mycobacterial infections.
    Silva MT; Silva MN; Appelberg R
    Microb Pathog; 1989 May; 6(5):369-80. PubMed ID: 2770507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the virulence of Mycobacterium avium complex (MAC) isolates in mice.
    Pedrosa J; Flórido M; Kunze ZM; Castro AG; Portaels F; McFadden J; Silva MT; Appelberg R
    Clin Exp Immunol; 1994 Nov; 98(2):210-6. PubMed ID: 7955524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium avium-complex infections in normal and immunodeficient mice.
    Collins FM; Stokes RW
    Tubercle; 1987 Jun; 68(2):127-36. PubMed ID: 2958962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of mononuclear phagocytes in expression of resistance and susceptibility to Mycobacterium avium infections in mice.
    Stokes RW; Orme IM; Collins FM
    Infect Immun; 1986 Dec; 54(3):811-9. PubMed ID: 3023238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. I/St mice hypersusceptible to Mycobacterium tuberculosis are resistant to M. avium.
    Kondratieva EV; Evstifeev VV; Kondratieva TK; Petrovskaya SN; Pichugin AV; Rubakova EI; Averbakh MM; Apt AS
    Infect Immun; 2007 Oct; 75(10):4762-8. PubMed ID: 17664269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of natural resistance gene on the immune response against Mycobacterium avium complex infection].
    Nakamura RM
    Kekkaku; 1992 Jan; 67(1):41-6. PubMed ID: 1542207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility to infection with Mycobacterium avium is paradoxically correlated with increased synthesis of specific anti-bacterial antibodies.
    Ferreira P; Soares R; Arala-Chaves M
    Int Immunol; 1991 May; 3(5):445-52. PubMed ID: 1911533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of immune responses during infection with Mycobacterium avium strains 100, 101 and the recently sequenced 104.
    Saunders BM; Dane A; Briscoe H; Britton WJ
    Immunol Cell Biol; 2002 Dec; 80(6):544-9. PubMed ID: 12406388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune responsiveness in Mycobacterium avium-infected mice: changes in the proportion of T cell subsets and antibody production during the course of infection.
    Xu DL; Goto Y; Amoako KK; Nagatomo T; Uchida K; Shinjo T
    Clin Exp Immunol; 1995 Dec; 102(3):523-8. PubMed ID: 8536367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of iron in the pathogenesis of Mycobacterium avium infection in mice.
    Dhople AM; Ibanez MA; Poirier TC
    Microbios; 1996; 87(351):77-87. PubMed ID: 9032957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive transfer of immunity of Mycobacterium avium in susceptible and resistant strains of mice.
    Stokes RW; Collins FM
    Clin Exp Immunol; 1990 Jul; 81(1):109-15. PubMed ID: 2116245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease.
    Brás A; Aguas AP
    Immunology; 1996 Sep; 89(1):20-5. PubMed ID: 8911135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.