These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19934486)

  • 1. The effect of processing history on physical behavior and cellular response for tyrosine-derived polyarylates.
    Doddi S; Patlolla A; Shanumunsgarundum S; Jaffe M; Collins G; Arinzeh TL
    Biomed Mater; 2009 Dec; 4(6):065006. PubMed ID: 19934486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers.
    Zhang X; Kotaki M; Okubayashi S; Sukigara S
    Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.
    Park JW; Doi Y; Iwata T
    Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro cell response to differences in poly-L-lactide crystallinity.
    Park A; Cima LG
    J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization.
    Kim D; Andou Y; Shirai Y; Nishida H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surface morphology and wettability on the inflammatory response against poly(L-lactic acid): a semi-quantitative study with monoclonal antibodies.
    Lam KH; Schakenraad JM; Groen H; Esselbrugge H; Dijkstra PJ; Feijen J; Nieuwenhuis P
    J Biomed Mater Res; 1995 Aug; 29(8):929-42. PubMed ID: 7593036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials.
    Im SH; Jung Y; Jang Y; Kim SH
    Biofabrication; 2016 Oct; 8(4):045010. PubMed ID: 27775924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water barrier properties in biaxially drawn poly(lactic acid) films.
    Delpouve N; Stoclet G; Saiter A; Dargent E; Marais S
    J Phys Chem B; 2012 Apr; 116(15):4615-25. PubMed ID: 22432898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paclitaxel loaded poly(L-lactic acid) (PLLA) microspheres. II. The effect of processing parameters on microsphere morphology and drug release kinetics.
    Liggins RT; Burt HM
    Int J Pharm; 2004 Aug; 281(1-2):103-6. PubMed ID: 15288347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational molecular modeling and structural rationalization for the design of a drug-loaded PLLA/PVA biopolymeric membrane.
    Sibeko B; Pillay V; Choonara YE; Khan RA; Modi G; Iyuke SE; Naidoo D; Danckwerts MP
    Biomed Mater; 2009 Feb; 4(1):015014. PubMed ID: 19075365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture.
    Barbanti SH; Santos AR; Zavaglia CA; Duek EA
    J Mater Sci Mater Med; 2004 Dec; 15(12):1315-21. PubMed ID: 15747184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(L-lactide)s.
    Tsuji H; Miyase T; Tezuka Y; Saha SK
    Biomacromolecules; 2005; 6(1):244-54. PubMed ID: 15638527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC
    J Phys Chem B; 2011 Sep; 115(38):11029-37. PubMed ID: 21838279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning of poly(lactic acid) stereocomplex nanofibers.
    Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A
    Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical characterization of thin semi-porous poly(L-lactic acid)/poly(ethylene glycol) membranes for tissue engineering.
    Swaminathan V; Tchao R; Jonnalagadda S
    J Biomater Sci Polym Ed; 2007; 18(10):1321-33. PubMed ID: 17939889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular orientation distributions in a biaxially oriented poly(L-lactic acid) film determined by polarized Raman spectroscopy.
    Tanaka M; Young RJ
    Biomacromolecules; 2006 Sep; 7(9):2575-82. PubMed ID: 16961320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.