These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 19935105)

  • 41. Sprint Start Kinetics of Amputee and Non-Amputee Sprinters.
    Willwacher S; Herrmann V; Heinrich K; Funken J; Strutzenberger G; Goldmann JP; Braunstein B; Brazil A; Irwin G; Potthast W; Brüggemann GP
    PLoS One; 2016; 11(11):e0166219. PubMed ID: 27846241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The impact of lower extremity mass and inertia manipulation on sprint kinematics.
    Bennett JP; Sayers MG; Burkett BJ
    J Strength Cond Res; 2009 Dec; 23(9):2542-7. PubMed ID: 19855307
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters.
    Nuell S; Illera-Domínguez VR; Carmona G; Alomar X; Padullés JM; Lloret M; Cadefau JA
    Eur J Sport Sci; 2020 Jul; 20(6):793-802. PubMed ID: 31526116
    [No Abstract]   [Full Text] [Related]  

  • 44. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters.
    Haugen T; Danielsen J; McGhie D; Sandbakk Ø; Ettema G
    Scand J Med Sci Sports; 2018 Mar; 28(3):1001-1008. PubMed ID: 28759127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Jeffriess MD; Callaghan SJ
    J Strength Cond Res; 2013 Sep; 27(9):2494-503. PubMed ID: 23222091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 9.58 and 10.49: nearing the citius end for 100 m?
    Haugen T; Tønnessen E; Seiler S
    Int J Sports Physiol Perform; 2015 Mar; 10(2):269-72. PubMed ID: 25229725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure?
    Bezodis NE; Salo AI; Trewartha G
    Sports Biomech; 2010 Nov; 9(4):258-69. PubMed ID: 21309300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of a Wide Stance on Block Start Performance in Sprint Running.
    Otsuka M; Kurihara T; Isaka T
    PLoS One; 2015; 10(11):e0142230. PubMed ID: 26544719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of hurdling step strategy on the kinematics of the block start.
    Rowley LJ; Churchill SM; Dunn M; Wheat J
    Sports Biomech; 2024 Jul; 23(7):846-859. PubMed ID: 33821749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. World-Class Male Sprinters and High Hurdlers Have Similar Start and Initial Acceleration Techniques.
    Bezodis IN; Brazil A; von Lieres Und Wilkau HC; Wood MA; Paradisis GP; Hanley B; Tucker CB; Pollitt L; Merlino S; Vazel PJ; Walker J; Bissas A
    Front Sports Act Living; 2019; 1():23. PubMed ID: 33344947
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.
    Hobara H; Kobayashi Y; Mochimaru M
    Int J Sports Med; 2015 Jun; 36(6):494-7. PubMed ID: 25700099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvement in sprint start performance by modulating an initial loading location on the starting blocks.
    Nagahara R; Gleadhill S; Ohshima Y
    J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sprint running with a body-weight supporting kite reduces ground contact time in well-trained sprinters.
    Kratky S; Müller E
    J Strength Cond Res; 2013 May; 27(5):1215-22. PubMed ID: 22744303
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Technical ability of force application as a determinant factor of sprint performance.
    Morin JB; Edouard P; Samozino P
    Med Sci Sports Exerc; 2011 Sep; 43(9):1680-8. PubMed ID: 21364480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance.
    Zafeiridis A; Saraslanidis P; Manou V; Ioakimidis P; Dipla K; Kellis S
    J Sports Med Phys Fitness; 2005 Sep; 45(3):284-90. PubMed ID: 16230978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinematic factors associated with start performance in World-class male sprinters.
    Walker J; Bissas A; Paradisis GP; Hanley B; Tucker CB; Jongerius N; Thomas A; von Lieres Und Wilkau HC; Brazil A; Wood MA; Merlino S; Vazel PJ; Bezodis IN
    J Biomech; 2021 Jul; 124():110554. PubMed ID: 34157480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acute Response of Well-Trained Sprinters to a 100-m Race: Higher Sprinting Velocity Achieved With Increased Step Rate Compared With Speed Training.
    Otsuka M; Kawahara T; Isaka T
    J Strength Cond Res; 2016 Mar; 30(3):635-42. PubMed ID: 26907837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.
    Kawamori N; Nosaka K; Newton RU
    J Strength Cond Res; 2013 Mar; 27(3):568-73. PubMed ID: 22531618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.
    Bezodis NE; Walton SP; Nagahara R
    J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.