BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 19935652)

  • 1. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex.
    Hase K; Kimura S; Takatsu H; Ohmae M; Kawano S; Kitamura H; Ito M; Watarai H; Hazelett CC; Yeaman C; Ohno H
    Nat Cell Biol; 2009 Dec; 11(12):1427-32. PubMed ID: 19935652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sec-ure nanotubes with RalA and exocyst.
    Zhao Y; Guo W
    Nat Cell Biol; 2009 Dec; 11(12):1396-7. PubMed ID: 19949438
    [No Abstract]   [Full Text] [Related]  

  • 3. LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation.
    Schiller C; Diakopoulos KN; Rohwedder I; Kremmer E; von Toerne C; Ueffing M; Weidle UH; Ohno H; Weiss EH
    J Cell Sci; 2013 Feb; 126(Pt 3):767-77. PubMed ID: 23239025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans.
    Frische EW; Pellis-van Berkel W; van Haaften G; Cuppen E; Plasterk RH; Tijsterman M; Bos JL; Zwartkruis FJ
    EMBO J; 2007 Dec; 26(24):5083-92. PubMed ID: 17989692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Roles for the N- and C-terminal Regions of M-Sec in Plasma Membrane Deformation during Tunneling Nanotube Formation.
    Kimura S; Yamashita M; Yamakami-Kimura M; Sato Y; Yamagata A; Kobashigawa Y; Inagaki F; Amada T; Hase K; Iwanaga T; Ohno H; Fukai S
    Sci Rep; 2016 Sep; 6():33548. PubMed ID: 27629377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shigella flexneri subverts host polarized exocytosis to enhance cell-to-cell spread.
    Herath TUB; Roy A; Gianfelice A; Ireton K
    Mol Microbiol; 2021 Nov; 116(5):1328-1346. PubMed ID: 34608697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of platelet dense granule secretion by the Ral GTPase-exocyst pathway.
    Kawato M; Shirakawa R; Kondo H; Higashi T; Ikeda T; Okawa K; Fukai S; Nureki O; Kita T; Horiuchi H
    J Biol Chem; 2008 Jan; 283(1):166-174. PubMed ID: 17938170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration.
    Spiczka KS; Yeaman C
    J Cell Sci; 2008 Sep; 121(Pt 17):2880-91. PubMed ID: 18697830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
    Carter KP; Hanna S; Genna A; Lewis D; Segall JE; Cox D
    Cancer Rep (Hoboken); 2019 Dec; 2(6):e1213. PubMed ID: 32467880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ral GTPases regulate exocyst assembly through dual subunit interactions.
    Moskalenko S; Tong C; Rosse C; Mirey G; Formstecher E; Daviet L; Camonis J; White MA
    J Biol Chem; 2003 Dec; 278(51):51743-8. PubMed ID: 14525976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M-Sec: Emerging secrets of tunneling nanotube formation.
    Ohno H; Hase K; Kimura S
    Commun Integr Biol; 2010 May; 3(3):231-3. PubMed ID: 20714400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ral: mediator of membrane trafficking.
    van Dam EM; Robinson PJ
    Int J Biochem Cell Biol; 2006; 38(11):1841-7. PubMed ID: 16781882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation.
    Mukerji J; Olivieri KC; Misra V; Agopian KA; Gabuzda D
    Retrovirology; 2012 Jun; 9():33. PubMed ID: 22534017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex.
    Nichols CD; Casanova JE
    Curr Biol; 2010 Jul; 20(14):1316-20. PubMed ID: 20579884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells.
    D'Aloia A; Berruti G; Costa B; Schiller C; Ambrosini R; Pastori V; Martegani E; Ceriani M
    Exp Cell Res; 2018 Jan; 362(2):349-361. PubMed ID: 29208460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exocyst complex in exocytosis and cell migration.
    Liu J; Guo W
    Protoplasma; 2012 Jul; 249(3):587-97. PubMed ID: 21997494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the structural implications of an alternatively spliced Exoc3l2, a paralog of the tunneling nanotube-forming M-Sec.
    O'Callaghan P; Zarb Y; Noborn F; Kreuger J
    PLoS One; 2018; 13(8):e0201557. PubMed ID: 30086153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dSTIM- and Ral/Exocyst-Mediated Synaptic Release from Pupal Dopaminergic Neurons Sustains
    Richhariya S; Jayakumar S; Kumar Sukumar S; Hasan G
    eNeuro; 2018; 5(3):. PubMed ID: 29938216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ral's engagement with the exocyst: breaking up is hard to do.
    Chen XW; Saltiel AR
    Cell Cycle; 2011 Jul; 10(14):2299-304. PubMed ID: 21654196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.