These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19935661)

  • 41. Solution structure of a homodimeric hypothetical protein, At5g22580, a structural genomics target from Arabidopsis thaliana.
    Cornilescu G; Cornilescu CC; Zhao Q; Frederick RO; Peterson FC; Thao S; Markley JL
    J Biomol NMR; 2004 Jul; 29(3):387-90. PubMed ID: 15213437
    [No Abstract]   [Full Text] [Related]  

  • 42. Conserved alternative splicing of Arabidopsis transthyretin-like determines protein localization and S-allantoin synthesis in peroxisomes.
    Lamberto I; Percudani R; Gatti R; Folli C; Petrucco S
    Plant Cell; 2010 May; 22(5):1564-74. PubMed ID: 20511299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of purines: only ureidoglycollate lyase out of four allantoin-degrading enzymes is present in mammals.
    Fujiwara S; Noguchi T
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):315-8. PubMed ID: 7492331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana.
    Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S
    Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolating the Arabidopsis thaliana genes for de novo purine synthesis by suppression of Escherichia coli mutants. I. 5'-Phosphoribosyl-5-aminoimidazole synthetase.
    Senecoff JF; Meagher RB
    Plant Physiol; 1993 Jun; 102(2):387-99. PubMed ID: 8108507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control.
    Rose A; Schraegle SJ; Stahlberg EA; Meier I
    BMC Evol Biol; 2005 Nov; 5():66. PubMed ID: 16288662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PMS1 from Arabidopsis thaliana: optimization of protein overexpression in Escherichia coli.
    Galles C; Gomez RL; Spampinato CP
    Mol Biol Rep; 2011 Feb; 38(2):1063-70. PubMed ID: 20571910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress.
    Denslow SA; Rueschhoff EE; Daub ME
    Plant Physiol Biochem; 2007 Feb; 45(2):152-61. PubMed ID: 17344055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Allantoin degradation by Saccharomyces cerevisiae--a model system for gene regulation and metabolic integration.
    Cooper TG
    Adv Enzymol Relat Areas Mol Biol; 1984; 56():91-139. PubMed ID: 6364705
    [No Abstract]   [Full Text] [Related]  

  • 50. MetaCyc and AraCyc. Metabolic pathway databases for plant research.
    Zhang P; Foerster H; Tissier CP; Mueller L; Paley S; Karp PD; Rhee SY
    Plant Physiol; 2005 May; 138(1):27-37. PubMed ID: 15888675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster.
    Vorwerk S; Biernacki S; Hillebrand H; Janzik I; Müller A; Weiler EW; Piotrowski M
    Planta; 2001 Mar; 212(4):508-16. PubMed ID: 11525507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae.
    Yoo HS; Genbauffe FS; Cooper TG
    Mol Cell Biol; 1985 Sep; 5(9):2279-88. PubMed ID: 3915539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog.
    Piotrowski M; Volmer JJ
    Plant Mol Biol; 2006 May; 61(1-2):111-22. PubMed ID: 16786295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The metabolic signature related to high plant growth rate in Arabidopsis thaliana.
    Meyer RC; Steinfath M; Lisec J; Becher M; Witucka-Wall H; Törjék O; Fiehn O; Eckardt A; Willmitzer L; Selbig J; Altmann T
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4759-64. PubMed ID: 17360597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.
    Vallone R; La Verde V; D'Onofrio M; Giorgetti A; Dominici P; Astegno A
    Protein Sci; 2016 Aug; 25(8):1461-71. PubMed ID: 27124620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of three urease accessory proteins that are required for urease activation in Arabidopsis.
    Witte CP; Rosso MG; Romeis T
    Plant Physiol; 2005 Nov; 139(3):1155-62. PubMed ID: 16244137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching.
    Schwartz SH; Qin X; Loewen MC
    J Biol Chem; 2004 Nov; 279(45):46940-5. PubMed ID: 15342640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular properties of the putative nitrogen sensor PII from Arabidopsis thaliana.
    Smith CS; Weljie AM; Moorhead GB
    Plant J; 2003 Jan; 33(2):353-60. PubMed ID: 12535348
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration.
    Heidenreich T; Wollers S; Mendel RR; Bittner F
    J Biol Chem; 2005 Feb; 280(6):4213-8. PubMed ID: 15561708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.