These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 19935886)
21. Identification of a Novel Pyruvyltransferase Using Wells DH; Goularte NF; Barnett MJ; Cegelski L; Long SR J Bacteriol; 2021 Nov; 203(24):e0040321. PubMed ID: 34606371 [TBL] [Abstract][Full Text] [Related]
22. Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021. Hawkins JP; Geddes BA; Oresnik IJ Mol Plant Microbe Interact; 2017 Dec; 30(12):1009-1019. PubMed ID: 28871850 [TBL] [Abstract][Full Text] [Related]
23. Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. Aneja P; Dai M; Lacorre DA; Pillon B; Charles TC FEMS Microbiol Lett; 2004 Oct; 239(2):277-83. PubMed ID: 15476977 [TBL] [Abstract][Full Text] [Related]
24. Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021. Rinaudi LV; Sorroche F; Zorreguieta A; Giordano W FEMS Microbiol Lett; 2010 Jan; 302(1):15-21. PubMed ID: 19929968 [TBL] [Abstract][Full Text] [Related]
25. Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. van Workum WA; Canter Cremers HC; Wijfjes AH; van der Kolk C; Wijffelman CA; Kijne JW Mol Plant Microbe Interact; 1997 Mar; 10(2):290-301. PubMed ID: 9057334 [TBL] [Abstract][Full Text] [Related]
26. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. Lehman AP; Long SR J Bacteriol; 2013 Dec; 195(23):5362-9. PubMed ID: 24078609 [TBL] [Abstract][Full Text] [Related]
27. Production of succinoglycan polymer in Sinorhizobium meliloti is affected by SMb21506 and requires the N-terminal domain of ExoP. Jofré E; Becker A Mol Plant Microbe Interact; 2009 Dec; 22(12):1656-68. PubMed ID: 19888830 [TBL] [Abstract][Full Text] [Related]
28. The Sinorhizobium meliloti ExoR protein is required for the downregulation of lpsS transcription and succinoglycan biosynthesis in response to divalent cations. Keating DH FEMS Microbiol Lett; 2007 Feb; 267(1):23-9. PubMed ID: 17233674 [TBL] [Abstract][Full Text] [Related]
29. Cell surface characteristics of two halotolerant strains of Sinorhizobium meliloti. Bhattacharya I; Das HR Microbiol Res; 2003; 158(2):187-94. PubMed ID: 12906393 [TBL] [Abstract][Full Text] [Related]
30. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015 [TBL] [Abstract][Full Text] [Related]
31. The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. diCenzo G; Milunovic B; Cheng J; Finan TM J Bacteriol; 2013 Jan; 195(2):202-12. PubMed ID: 23123907 [TBL] [Abstract][Full Text] [Related]
32. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. Glucksmann MA; Reuber TL; Walker GC J Bacteriol; 1993 Nov; 175(21):7045-55. PubMed ID: 8226646 [TBL] [Abstract][Full Text] [Related]
33. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. Glucksmann MA; Reuber TL; Walker GC J Bacteriol; 1993 Nov; 175(21):7033-44. PubMed ID: 8226645 [TBL] [Abstract][Full Text] [Related]
34. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. Becker A; Rüberg S; Küster H; Roxlau AA; Keller M; Ivashina T; Cheng HP; Walker GC; Pühler A J Bacteriol; 1997 Feb; 179(4):1375-84. PubMed ID: 9023225 [TBL] [Abstract][Full Text] [Related]
35. Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. Zhan HJ; Lee CC; Leigh JA J Bacteriol; 1991 Nov; 173(22):7391-4. PubMed ID: 1938929 [TBL] [Abstract][Full Text] [Related]
36. The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Petrovics G; Putnoky P; Reuhs B; Kim J; Thorp TA; Noel KD; Carlson RW; Kondorosi A Mol Microbiol; 1993 Jun; 8(6):1083-94. PubMed ID: 8361353 [TBL] [Abstract][Full Text] [Related]
37. RpoE2 of Sinorhizobium meliloti is necessary for trehalose synthesis and growth in hyperosmotic media. Flechard M; Fontenelle C; Blanco C; Goude R; Ermel G; Trautwetter A Microbiology (Reading); 2010 Jun; 156(Pt 6):1708-1718. PubMed ID: 20223801 [TBL] [Abstract][Full Text] [Related]
38. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. Jebbar M; Sohn-Bösser L; Bremer E; Bernard T; Blanco C J Bacteriol; 2005 Feb; 187(4):1293-304. PubMed ID: 15687193 [TBL] [Abstract][Full Text] [Related]
39. Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. González JE; Semino CE; Wang LX; Castellano-Torres LE; Walker GC Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13477-82. PubMed ID: 9811825 [TBL] [Abstract][Full Text] [Related]
40. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Remus DM; van Kranenburg R; van Swam II; Taverne N; Bongers RS; Wels M; Wells JM; Bron PA; Kleerebezem M Microb Cell Fact; 2012 Nov; 11():149. PubMed ID: 23170998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]