BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19935890)

  • 1. The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases.
    Maki ML; Lawrence JR; Swerhone GD; Leung KT
    Can J Microbiol; 2009 Oct; 55(10):1176-86. PubMed ID: 19935890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.
    Nandakumar K; Keeler W; Schraft H; Leung KT
    Biotechnol Bioeng; 2006 Jul; 94(4):793-802. PubMed ID: 16489628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm.
    Collet A; Cosette P; Beloin C; Ghigo JM; Rihouey C; Lerouge P; Junter GA; Jouenne T
    J Proteome Res; 2008 Nov; 7(11):4659-69. PubMed ID: 18826300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms.
    Gjermansen M; Ragas P; Sternberg C; Molin S; Tolker-Nielsen T
    Environ Microbiol; 2005 Jun; 7(6):894-906. PubMed ID: 15892708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm.
    Nancharaiah YV; Venugopalan VP; Wuertz S; Wilderer PA; Hausner M
    J Microbiol Methods; 2005 Feb; 60(2):179-87. PubMed ID: 15590092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-survival responses of a carbon-starved p-nitrophenol-mineralizing Moraxella strain in river water.
    Moore M; Trevors J; Lee H; Leung KT
    Can J Microbiol; 2005 Mar; 51(3):223-9. PubMed ID: 15920620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1.
    Herzberg M; Dosoretz CG; Kuhn J; Klein S; Green M
    Water Res; 2006 Aug; 40(14):2704-12. PubMed ID: 16814359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anchorage of GFP fusion on the cell surface of Pseudomonas putida.
    Yuan Y; Yang C; Song C; Jiang H; Mulchandani A; Qiao C
    Biodegradation; 2011 Feb; 22(1):51-61. PubMed ID: 20556484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of rpoS during maturation of Escherichia coli biofilms.
    Ito A; May T; Kawata K; Okabe S
    Biotechnol Bioeng; 2008 Apr; 99(6):1462-71. PubMed ID: 17979199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized expression profiles of rpoS in Escherichia coli biofilms.
    Ito A; May T; Taniuchi A; Kawata K; Okabe S
    Biotechnol Bioeng; 2009 Aug; 103(5):975-83. PubMed ID: 19288441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion.
    Gilbert ES; Walker AW; Keasling JD
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):77-81. PubMed ID: 12658518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats.
    van de Mortel M; Halverson LJ
    Mol Microbiol; 2004 May; 52(3):735-50. PubMed ID: 15101980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polyhydroxyalkanoate biosynthesis genes are differentially regulated in planktonic- and biofilm-grown Pseudomonas aeruginosa.
    Campisano A; Overhage J; Rehm BH
    J Biotechnol; 2008 Feb; 133(4):442-52. PubMed ID: 18179839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planktonic cell yield is linked to biofilm development.
    Bester E; Edwards EA; Wolfaardt GM
    Can J Microbiol; 2009 Oct; 55(10):1195-206. PubMed ID: 19935892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].
    Zaĭtseva IuV; Voloshina PV; Liu X; Ovadis MI; Berg G; Chernin LS; Khmel' IA
    Genetika; 2010 May; 46(5):616-21. PubMed ID: 20583596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.
    Gjermansen M; Ragas P; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Dec; 265(2):215-24. PubMed ID: 17054717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carbon starvation on p-nitrophenol degradation by a Moraxella strain in buffer and river water.
    Leung KT; Moore M; Lee H; Trevors JT
    FEMS Microbiol Ecol; 2005 Jan; 51(2):237-45. PubMed ID: 16329872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.