These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19935917)

  • 21. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.
    Nemeth C; Yang CY; Kasprzak P; Hubbart S; Scholefield D; Mehra S; Skipper E; King I; King J
    Genome; 2015 Feb; 58(2):71-9. PubMed ID: 26053312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences.
    Renny-Byfield S; Kovarik A; Kelly LJ; Macas J; Novak P; Chase MW; Nichols RA; Pancholi MR; Grandbastien MA; Leitch AR
    Plant J; 2013 Jun; 74(5):829-39. PubMed ID: 23517128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Introgression of Aegilops genetic material into the genome of hexaploid triticale].
    Orlovskaia OA; Kaminskaia LN; Khotyleva LV
    Genetika; 2007 Mar; 43(3):363-9. PubMed ID: 17486755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize.
    Braz GT; Yu F; Zhao H; Deng Z; Birchler JA; Jiang J
    New Phytol; 2021 Mar; 229(6):3294-3302. PubMed ID: 33222183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B.
    Paux E; Roger D; Badaeva E; Gay G; Bernard M; Sourdille P; Feuillet C
    Plant J; 2006 Nov; 48(3):463-74. PubMed ID: 17010109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.
    Matsuoka Y; Takumi S; Nasuda S
    Int Rev Cell Mol Biol; 2014; 309():199-258. PubMed ID: 24529724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and cytological characterization of trigeneric hybrids of durum wheat with and without Ph1.
    Jauhar PP; Doğramaci M; Peterson TS
    Genome; 2004 Dec; 47(6):1173-81. PubMed ID: 15644976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids.
    Salina EA; Lim KY; Badaeva ED; Shcherban AB; Adonina IG; Amosova AV; Samatadze TE; Vatolina TY; Zoshchuk SA; Leitch AR
    Genome; 2006 Aug; 49(8):1023-35. PubMed ID: 17036077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size matters in Triticeae polyploids: larger genomes have higher remodeling.
    Bento M; Gustafson JP; Viegas W; Silva M
    Genome; 2011 Mar; 54(3):175-83. PubMed ID: 21423280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A method to produce radiation hybrids for the D-genome chromosomes of wheat (Triticum aestivum L.).
    Riera-Lizarazu O; Leonard JM; Tiwari VK; Kianian SF
    Cytogenet Genome Res; 2010 Jul; 129(1-3):234-40. PubMed ID: 20501975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coevolution of A and B genomes in allotetraploid Triticum dicoccoides.
    Belyayev A; Raskina O; Korol A; Nevo E
    Genome; 2000 Dec; 43(6):1021-6. PubMed ID: 11195333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [RAPD analysis of the genome evolution in allopolyploid species in Aegilops].
    Cai CL; Wang JB; Jing RC; Zhu YG
    Yi Chuan Xue Bao; 2001; 28(2):158-65. PubMed ID: 11233260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The origin of unusual chromosome constitutions among newly formed allopolyploids.
    Oleszczuk S; Lukaszewski AJ
    Am J Bot; 2014 Feb; 101(2):318-26. PubMed ID: 24458118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The effect of alien genomes on the diploidization system in wheat].
    Sechniak AL; Prokopovich EL; Simonenko LK; Motsnyĭ II
    Tsitol Genet; 2000; 34(3):28-33. PubMed ID: 10920858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression.
    Wang H; Hu Z; Huang K; Han Y; Zhao A; Han H; Song L; Fan C; Li R; Xin M; Peng H; Yao Y; Sun Q; Ni Z
    Plant J; 2018 Sep; 95(6):976-987. PubMed ID: 29932270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat.
    Salina EA; Numerova OM; Ozkan H; Feldman M
    Genome; 2004 Oct; 47(5):860-7. PubMed ID: 15499400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homoeolog-specific transcriptional bias in allopolyploid wheat.
    Akhunova AR; Matniyazov RT; Liang H; Akhunov ED
    BMC Genomics; 2010 Sep; 11():505. PubMed ID: 20849627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants.
    Naranjo T; Corredor E
    Cytogenet Genome Res; 2008; 120(3-4):320-30. PubMed ID: 18504361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].
    Galaev AV; Sivolap IuM
    Tsitol Genet; 2005; 39(3):57-66. PubMed ID: 16250247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homoeologous recombination in the presence of Ph1 gene in wheat.
    Koo DH; Liu W; Friebe B; Gill BS
    Chromosoma; 2017 Aug; 126(4):531-540. PubMed ID: 27909815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.