These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19936193)

  • 21. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice.
    Roth L; Rombouts M; Schrijvers DM; Lemmens K; De Keulenaer GW; Martinet W; De Meyer GR
    Atherosclerosis; 2015 Sep; 242(1):288-94. PubMed ID: 26233915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of inflammation and allergy in acute coronary syndromes.
    Ozben B; Erdogan O
    Inflamm Allergy Drug Targets; 2008 Sep; 7(3):136-44. PubMed ID: 18782020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells--a potential mechanism for the weakening and rupture of atherosclerotic plaques.
    Leskinen MJ; Kovanen PT; Lindstedt KA
    Biochem Pharmacol; 2003 Oct; 66(8):1493-8. PubMed ID: 14555226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture.
    Lindstedt KA; Leskinen MJ; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1350-8. PubMed ID: 15191939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kounis syndrome (allergic angina and allergic myocardial infarction): a natural paradigm?
    Kounis NG
    Int J Cardiol; 2006 Jun; 110(1):7-14. PubMed ID: 16249041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis.
    Chistiakov DA; Melnichenko AA; Myasoedova VA; Grechko AV; Orekhov AN
    Ann Med; 2017 Dec; 49(8):661-677. PubMed ID: 28797175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kounis syndrome: a new twist on an old disease.
    Kounis NG; Mazarakis A; Tsigkas G; Giannopoulos S; Goudevenos J
    Future Cardiol; 2011 Nov; 7(6):805-24. PubMed ID: 22050066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction.
    Kovanen PT; Kaartinen M; Paavonen T
    Circulation; 1995 Sep; 92(5):1084-8. PubMed ID: 7648650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is the carotid plaque rupture a pivotal event in stroke pathogenesis? Update on the role of the intraplaque inflammatory processes.
    Pende A; Dallegri F
    Curr Vasc Pharmacol; 2015; 13(2):173-81. PubMed ID: 24188488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thrombosis formation on atherosclerotic lesions and plaque rupture.
    Badimon L; Vilahur G
    J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques.
    van der Laan SW; Siemelink MA; Haitjema S; Foroughi Asl H; Perisic L; Mokry M; van Setten J; Malik R; Dichgans M; Worrall BB; ; Samani NJ; Schunkert H; Erdmann J; Hedin U; Paulsson-Berne G; Björkegrenn JLM; de Borst GJ; Asselbergs FW; den Ruijter FW; de Bakker PIW; Pasterkamp G
    Circ Genom Precis Med; 2018 Sep; 11(9):e002115. PubMed ID: 30354329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mast cells in vulnerable atherosclerotic plaques--a view to a kill.
    Lindstedt KA; Mäyränpää MI; Kovanen PT
    J Cell Mol Med; 2007; 11(4):739-58. PubMed ID: 17760836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress-induced mast cell activation contributes to atherosclerotic plaque destabilization.
    Lagraauw HM; Wezel A; van der Velden D; Kuiper J; Bot I
    Sci Rep; 2019 Feb; 9(1):2134. PubMed ID: 30765859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture.
    Boyle JJ
    Curr Vasc Pharmacol; 2005 Jan; 3(1):63-8. PubMed ID: 15638783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atherosclerosis, Periodontal Disease, and Treatment with Resolvins.
    Hamilton JA; Hasturk H; Kantarci A; Serhan CN; Van Dyke T
    Curr Atheroscler Rep; 2017 Nov; 19(12):57. PubMed ID: 29110146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis.
    Pertiwi KR; de Boer OJ; Mackaaij C; Pabittei DR; de Winter RJ; Li X; van der Wal AC
    J Pathol; 2019 Apr; 247(4):505-512. PubMed ID: 30506885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Role of mast cells in the pathogenesis of atherosclerosis].
    Czyzewska-Buczyńska A; Witkiewicz W
    Przegl Lek; 2011; 68(3):171-4. PubMed ID: 21812235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlamydia pneumoniae and atherosclerosis: the role of mast cells.
    Di Pietro M; Schiavoni G; Del Piano M; Shaik Y; Boscolo P; Caraffa A; Grano M; Teté S; Conti F; Sessa R
    J Biol Regul Homeost Agents; 2009; 23(2):65-9. PubMed ID: 19589286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mast cells in human and experimental cardiometabolic diseases.
    Shi GP; Bot I; Kovanen PT
    Nat Rev Cardiol; 2015 Nov; 12(11):643-58. PubMed ID: 26259935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophages: promising targets for the treatment of atherosclerosis.
    Wilson HM; Barker RN; Erwig LP
    Curr Vasc Pharmacol; 2009 Apr; 7(2):234-43. PubMed ID: 19356007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.