These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19936234)
1. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients. Monahan WB PLoS One; 2009 Nov; 4(11):e7921. PubMed ID: 19936234 [TBL] [Abstract][Full Text] [Related]
2. Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change. Monahan WB; Tingley MW PLoS One; 2012; 7(7):e42097. PubMed ID: 22860062 [TBL] [Abstract][Full Text] [Related]
3. Birds track their Grinnellian niche through a century of climate change. Tingley MW; Monahan WB; Beissinger SR; Moritz C Proc Natl Acad Sci U S A; 2009 Nov; 106 Suppl 2(Suppl 2):19637-43. PubMed ID: 19805037 [TBL] [Abstract][Full Text] [Related]
4. Does climate limit species richness by limiting individual species' ranges? Boucher-Lalonde V; Kerr JT; Currie DJ Proc Biol Sci; 2014 Feb; 281(1776):20132695. PubMed ID: 24352946 [TBL] [Abstract][Full Text] [Related]
5. How complex should models be? Comparing correlative and mechanistic range dynamics models. Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817 [TBL] [Abstract][Full Text] [Related]
6. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world. Anderson AS; Storlie CJ; Shoo LP; Pearson RG; Williams SE PLoS One; 2013; 8(7):e69393. PubMed ID: 23936005 [TBL] [Abstract][Full Text] [Related]
7. Population trends influence species ability to track climate change. Ralston J; DeLuca WV; Feldman RE; King DI Glob Chang Biol; 2017 Apr; 23(4):1390-1399. PubMed ID: 27650480 [TBL] [Abstract][Full Text] [Related]
8. Tracking of climatic niche boundaries under recent climate change. La Sorte FA; Jetz W J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840 [TBL] [Abstract][Full Text] [Related]
9. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps. Boucher-Lalonde V; Currie DJ PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201 [TBL] [Abstract][Full Text] [Related]
10. Global change and the distributional dynamics of migratory bird populations wintering in Central America. La Sorte FA; Fink D; Blancher PJ; Rodewald AD; Ruiz-Gutierrez V; Rosenberg KV; Hochachka WM; Verburg PH; Kelling S Glob Chang Biol; 2017 Dec; 23(12):5284-5296. PubMed ID: 28736872 [TBL] [Abstract][Full Text] [Related]
11. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
12. Relating habitat and climatic niches in birds. Barnagaud JY; Devictor V; Jiguet F; Barbet-Massin M; Le Viol I; Archaux F PLoS One; 2012; 7(3):e32819. PubMed ID: 22427891 [TBL] [Abstract][Full Text] [Related]
13. Drivers of climate change impacts on bird communities. Pearce-Higgins JW; Eglington SM; Martay B; Chamberlain DE J Anim Ecol; 2015 Jul; 84(4):943-54. PubMed ID: 25757576 [TBL] [Abstract][Full Text] [Related]
14. Directionality of recent bird distribution shifts and climate change in Great Britain. Gillings S; Balmer DE; Fuller RJ Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202 [TBL] [Abstract][Full Text] [Related]
15. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Khaliq I; Hof C; Prinzinger R; Böhning-Gaese K; Pfenninger M Proc Biol Sci; 2014 Aug; 281(1789):20141097. PubMed ID: 25009066 [TBL] [Abstract][Full Text] [Related]
16. Avian distributions under climate change: towards improved projections. La Sorte FA; Jetz W J Exp Biol; 2010 Mar; 213(6):862-9. PubMed ID: 20190111 [TBL] [Abstract][Full Text] [Related]
17. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change. La Sorte FA; Butchart SH; Jetz W; Böhning-Gaese K PLoS One; 2014; 9(5):e98361. PubMed ID: 24852009 [TBL] [Abstract][Full Text] [Related]
18. Re-shuffling of species with climate disruption: a no-analog future for California birds? Stralberg D; Jongsomjit D; Howell CA; Snyder MA; Alexander JD; Wiens JA; Root TL PLoS One; 2009 Sep; 4(9):e6825. PubMed ID: 19724641 [TBL] [Abstract][Full Text] [Related]
19. Model systems for a no-analog future: species associations and climates during the last deglaciation. Williams JW; Blois JL; Gill JL; Gonzales LM; Grimm EC; Ordonez A; Shuman B; Veloz SD Ann N Y Acad Sci; 2013 Sep; 1297():29-43. PubMed ID: 23981247 [TBL] [Abstract][Full Text] [Related]
20. Effects of diversity on thermal niche variation in bird communities under climate change. Marjakangas EL; Santangeli A; Johnston A; Michel NL; Princé K; Lehikoinen A Sci Rep; 2022 Dec; 12(1):21810. PubMed ID: 36528749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]