These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19936234)

  • 41. Decomposing the spatial and temporal effects of climate on bird populations in northern European mountains.
    Bradter U; Johnston A; Hochachka WM; Soultan A; Brommer JE; Gaget E; Kålås JA; Lehikoinen A; Lindström Å; Piirainen S; Pavón-Jordán D; Pärt T; Øien IJ; Sandercock BK
    Glob Chang Biol; 2022 Nov; 28(21):6209-6227. PubMed ID: 35899584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interspecific competition shapes bird species' distributions along tropical precipitation gradients.
    Freeman BG; Miller ET; Strimas-Mackey M
    Ecol Lett; 2024 Aug; 27(8):e14487. PubMed ID: 39086139
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Climatic constraints on wintering bird distributions are modified by urbanization and weather.
    Zuckerberg B; Bonter DN; Hochachka WM; Koenig WD; DeGaetano AT; Dickinson JL
    J Anim Ecol; 2011 Mar; 80(2):403-13. PubMed ID: 21118200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Community science validates climate suitability projections from ecological niche modeling.
    Saunders SP; Michel NL; Bateman BL; Wilsey CB; Dale K; LeBaron GS; Langham GM
    Ecol Appl; 2020 Sep; 30(6):e02128. PubMed ID: 32223029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences.
    Gaüzère P; Jiguet F; Devictor V
    Glob Chang Biol; 2015 Sep; 21(9):3367-78. PubMed ID: 25731935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America.
    Case MJ; Lawler JJ
    Glob Chang Biol; 2017 May; 23(5):2005-2015. PubMed ID: 27859937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis.
    Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F
    Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance.
    Tsai HY; Rubenstein DR; Chen BF; Liu M; Chan SF; Chen DP; Sun SJ; Yuan TN; Shen SF
    Elife; 2020 Aug; 9():. PubMed ID: 32807299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.
    Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA
    PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Are species' responses to global change predicted by past niche evolution?
    Lavergne S; Evans ME; Burfield IJ; Jiguet F; Thuiller W
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1610):20120091. PubMed ID: 23209172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Forecasting distributional responses of limber pine to climate change at management-relevant scales in Rocky Mountain National Park.
    Monahan WB; Cook T; Melton F; Connor J; Bobowski B
    PLoS One; 2013; 8(12):e83163. PubMed ID: 24391742
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Climate-mediated energetic constraints on the distribution of hibernating mammals.
    Humphries MM; Thomas DW; Speakman JR
    Nature; 2002 Jul; 418(6895):313-6. PubMed ID: 12124621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial and seasonal variation in thermal sensitivity within North American bird species.
    Cohen JM; Fink D; Zuckerberg B
    Proc Biol Sci; 2023 Nov; 290(2010):20231398. PubMed ID: 37935364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.
    Socolar JB; Epanchin PN; Beissinger SR; Tingley MW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12976-12981. PubMed ID: 29133415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preferred prey reduce species realized niche shift and improve range expansion prediction.
    Han L; Zhang Z; Tu W; Zhang Q; Hong Y; Chen S; Lin Z; Gu S; Du Y; Wu Z; Liu X
    Sci Total Environ; 2023 Feb; 859(Pt 2):160370. PubMed ID: 36414055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Climate change in our backyards: the reshuffling of North America's winter bird communities.
    Princé K; Zuckerberg B
    Glob Chang Biol; 2015 Feb; 21(2):572-85. PubMed ID: 25322929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic models project bird invasions with accuracy.
    Strubbe D; Jiménez L; Barbosa AM; Davis AJS; Lens L; Rahbek C
    Nat Commun; 2023 May; 14(1):2520. PubMed ID: 37130835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ecological niche transferability using invasive species as a case study.
    Fernández M; Hamilton H
    PLoS One; 2015; 10(3):e0119891. PubMed ID: 25785858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Realized niche shift during a global biological invasion.
    Tingley R; Vallinoto M; Sequeira F; Kearney MR
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10233-8. PubMed ID: 24982155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models.
    Carbeck K; Wang T; Reid JM; Arcese P
    Glob Chang Biol; 2022 Jul; 28(14):4260-4275. PubMed ID: 35366358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.