These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19936312)

  • 1. Analysis of high-perimeter planar electrodes for efficient neural stimulation.
    Wei XF; Grill WM
    Front Neuroeng; 2009; 2():15. PubMed ID: 19936312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency electrodes for deep brain stimulation.
    Grill WM; Wei XF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3298-301. PubMed ID: 19964297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Pollo C; Graham SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():791-4. PubMed ID: 24109806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Elahi B; Molina A; Mosig JR; Pollo C; Chen R; Graham SJ
    Front Neuroeng; 2013; 6():3. PubMed ID: 23874290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative electrodes increase neural recruitment for deep brain stimulation.
    Wei XF; Iyengar N; DeMaria AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3419-22. PubMed ID: 26737027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of high-perimeter electrode designs for deep brain stimulation.
    Howell B; Grill WM
    J Neural Eng; 2014 Aug; 11(4):046026. PubMed ID: 25029124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis.
    Brunton E; Lowery AJ; Rajan R
    Front Neuroeng; 2012; 5():23. PubMed ID: 23060789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation.
    Park H; Takmakov P; Lee H
    Sci Rep; 2018 Mar; 8(1):4375. PubMed ID: 29531230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Transcutaneous Stimulation Electrodes for Wearable Neuroprostheses.
    RaviChandran N; Teo MY; Aw K; McDaid A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1651-1660. PubMed ID: 32634102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation.
    Zander HJ; Graham RD; Anaya CJ; Lempka SF
    J Neural Eng; 2020 Jun; 17(3):036019. PubMed ID: 32365340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrode geometry on the electrolyte resistance measurement over the surface of a skin phantom in a noninvasive manner.
    Delgado-Arenas HF; Rodríguez-López A; Rivera F; Ramos KJ; Reséndiz-Ramírez R; Antano-Lopez R
    Bioelectrochemistry; 2019 Dec; 130():107337. PubMed ID: 31400566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel surface electrode design for preferential activation of cutaneous nociceptors.
    Poulsen AH; van den Berg B; Arguissain F; Tigerholm J; Buitenweg JR; Andersen OK; Mørch CD
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996054
    [No Abstract]   [Full Text] [Related]  

  • 19. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.