BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1993661)

  • 1. Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline.
    Burdett V
    J Biol Chem; 1991 Feb; 266(5):2872-7. PubMed ID: 1993661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O).
    Manavathu EK; Fernandez CL; Cooperman BS; Taylor DE
    Antimicrob Agents Chemother; 1990 Jan; 34(1):71-7. PubMed ID: 2183711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent.
    Burdett V
    J Bacteriol; 1996 Jun; 178(11):3246-51. PubMed ID: 8655505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding interaction between Tet(M) and the ribosome: requirements for binding.
    Dantley KA; Dannelly HK; Burdett V
    J Bacteriol; 1998 Aug; 180(16):4089-92. PubMed ID: 9696754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overproduction and purification of the Tn10-specified inner membrane tetracycline resistance protein Tet using fusions to beta-galactosidase.
    Hickman RK; McMurry LM; Levy SB
    Mol Microbiol; 1990 Aug; 4(8):1241-51. PubMed ID: 2177817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression.
    Yaskowiak ES; March PE
    Mol Microbiol; 1995 Mar; 15(5):943-53. PubMed ID: 7596295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that TET protein functions as a multimer in the inner membrane of Escherichia coli.
    Hickman RK; Levy SB
    J Bacteriol; 1988 Apr; 170(4):1715-20. PubMed ID: 3280550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210.
    Charpentier E; Gerbaud G; Courvalin P
    Gene; 1993 Sep; 131(1):27-34. PubMed ID: 8370538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unstable tetracycline resistance gene of Streptomyces lividans 1326 encodes a putative protein with similarities to translational elongation factors and Tet(M) and Tet(O) proteins.
    Dittrich W; Schrempf H
    Antimicrob Agents Chemother; 1992 May; 36(5):1119-24. PubMed ID: 1510403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxyl-terminal amino acid residues in elongation factor G essential for ribosome association and translocation.
    Hou Y; Yaskowiak ES; March PE
    J Bacteriol; 1994 Nov; 176(22):7038-44. PubMed ID: 7961469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and sequence of a tet(M) tetracycline resistance determinant homologue in clinical isolates of Escherichia coli.
    Jones CH; Tuckman M; Murphy E; Bradford PA
    J Bacteriol; 2006 Oct; 188(20):7151-64. PubMed ID: 17015654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G.
    Voigt J; Nagel K
    Eur J Biochem; 1990 Dec; 194(2):579-85. PubMed ID: 2269283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent effects of fluoroaluminates on the peptide chain elongation factors EF-Tu and EF-G as members of the GTPase superfamily.
    Mesters JR; Martien de Graaf J; Kraal B
    FEBS Lett; 1993 Apr; 321(2-3):149-52. PubMed ID: 8477844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased functional activity of elongation factor G with G16V mutation in the GTP-binding domain.
    Martemyanov KA; Liljas A; Gudkov AT
    Biochemistry (Mosc); 1998 Oct; 63(10):1216-9. PubMed ID: 9864458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W
    Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of the genes for protein synthesis elongation factors Tu and G in the cyanobacterium Anacystis nidulans.
    Mickel FS; Spremulli LL
    J Bacteriol; 1986 Apr; 166(1):78-82. PubMed ID: 3082860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a truncated, but functionally active tet(H) tetracycline resistance gene in Pasteurella aerogenes and Pasteurella multocida.
    Kehrenberg C; Schwarz S
    FEMS Microbiol Lett; 2000 Jul; 188(2):191-5. PubMed ID: 10913704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of bacterial protein synthesis machinery: initiation and elongation in Mycobacterium smegmatis.
    Bruell CM; Eichholz C; Kubarenko A; Post V; Katunin VI; Hobbie SN; Rodnina MV; Böttger EC
    Biochemistry; 2008 Aug; 47(34):8828-39. PubMed ID: 18672904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.