These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1993661)

  • 21. Purification of elongation factors EF-Tu and EF-G from Escherichia coli by covalent chromatography on thiol-sepharose.
    Caldas TD; El Yaagoubi A; Kohiyama M; Richarme G
    Protein Expr Purif; 1998 Oct; 14(1):65-70. PubMed ID: 9758752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides.
    Rubin RA; Levy SB
    J Bacteriol; 1991 Jul; 173(14):4503-9. PubMed ID: 2066343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward a model for the interaction between elongation factor Tu and the ribosome.
    Weijland A; Parmeggiani A
    Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and N-terminal sequence analysis of pea chloroplast protein synthesis factor EF-G.
    Akkaya MS; Welcsh PL; Wolfe MA; Duerr BK; Becktel WJ; Breitenberger CA
    Arch Biochem Biophys; 1994 Jan; 308(1):109-17. PubMed ID: 8311443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T].
    Smailov SK; Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression and purification of Thermus thermophilus elongation factors G, Tu, and Ts from Escherichia coli.
    Blank J; Grillenbeck NW; Kreutzer R; Sprinzl M
    Protein Expr Purif; 1995 Oct; 6(5):637-45. PubMed ID: 8535157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu.
    Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosomal protein L1 from Escherichia coli. Its role in the binding of tRNA to the ribosome and in elongation factor g-dependent gtp hydrolysis.
    Sander G
    J Biol Chem; 1983 Aug; 258(16):10098-103. PubMed ID: 6350280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance.
    Nikolich MP; Shoemaker NB; Salyers AA
    Antimicrob Agents Chemother; 1992 May; 36(5):1005-12. PubMed ID: 1339256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interdomain hybrid Tet proteins confer tetracycline resistance only when they are derived from closely related members of the tet gene family.
    Rubin RA; Levy SB
    J Bacteriol; 1990 May; 172(5):2303-12. PubMed ID: 2185211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome.
    Rodnina MV; Savelsbergh A; Matassova NB; Katunin VI; Semenkov YP; Wintermeyer W
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9586-90. PubMed ID: 10449736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of a restricted fragment of staphylococcal tetracycline resistance determinant as a fused product in Escherichia coli.
    Aoki T; Amauchi K; Watabe H
    Chem Pharm Bull (Tokyo); 1991 Feb; 39(2):428-31. PubMed ID: 2054868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu.
    Swart GW; Parmeggiani A; Kraal B; Bosch L
    Biochemistry; 1987 Apr; 26(7):2047-54. PubMed ID: 3297141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Bacterial resistance mechanisms for tetracyclines].
    Yamaguchi A
    Nihon Rinsho; 1997 May; 55(5):1245-51. PubMed ID: 9155182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tRNA modification activity is necessary for Tet(M)-mediated tetracycline resistance.
    Burdett V
    J Bacteriol; 1993 Nov; 175(22):7209-15. PubMed ID: 8226667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequencing of a tet(Q) gene isolated from Bacteroides fragilis 1126.
    Lépine G; Lacroix JM; Walker CB; Progulske-Fox A
    Antimicrob Agents Chemother; 1993 Sep; 37(9):2037-41. PubMed ID: 7916585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12.
    Donner D; Villems R; Liljas A; Kurland CG
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3192-5. PubMed ID: 210452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe.
    Miyazaki M; Uritani M; Fujimura K; Yamakatsu H; Kageyama T; Takahashi K
    J Biochem; 1988 Mar; 103(3):508-21. PubMed ID: 3214489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.