These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19936778)

  • 21. An internal model for acquisition and retention of motor learning during arm reaching.
    Lonini L; Dipietro L; Zollo L; Guglielmelli E; Krebs HI
    Neural Comput; 2009 Jul; 21(7):2009-27. PubMed ID: 19323640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of internal dynamics models in limb movements depends on stability.
    Milner TE
    Exp Brain Res; 2004 Nov; 159(2):172-84. PubMed ID: 15243728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm.
    Kim HK; Carmena JM; Biggs SJ; Hanson TL; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1520-9. PubMed ID: 17694874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling multijoint motor behavior.
    Hogan N; Bizzi E; Mussa-Ivaldi FA; Flash T
    Exerc Sport Sci Rev; 1987; 15():153-90. PubMed ID: 3297722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling between muscle activities and muscle torques during horizontal-planar arm movements with direction reversal.
    Almeida GL; Freitas SM; Marconi NF
    J Electromyogr Kinesiol; 2006 Jun; 16(3):303-11. PubMed ID: 16139524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Position information but not force information is used in adapting to changes in environmental dynamics.
    Milner TE; Hinder MR
    J Neurophysiol; 2006 Aug; 96(2):526-34. PubMed ID: 16611847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
    Emken JL; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):33-9. PubMed ID: 15813404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological basis of limb-impedance modulation during free and constrained movements.
    Damm L; McIntyre J
    J Neurophysiol; 2008 Nov; 100(5):2577-88. PubMed ID: 18715898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics.
    Johnson LA; Fuglevand AJ
    J Neural Eng; 2009 Oct; 6(5):055008. PubMed ID: 19721180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new view on visuomotor channels: the case of the disappearing dynamics.
    Neilson PD; Neilson MD
    Hum Mov Sci; 2004 Oct; 23(3-4):257-83. PubMed ID: 15541518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans.
    Milner TE; Franklin DW
    J Physiol; 2005 Sep; 567(Pt 2):651-64. PubMed ID: 15961421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of force adaptation during childhood.
    Konczak J; Jansen-Osmann P; Kalveram KT
    J Mot Behav; 2003 Mar; 35(1):41-52. PubMed ID: 12724098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model of the adaptive control of human arm motions.
    Sanner RM; Kosha M
    Biol Cybern; 1999 May; 80(5):369-82. PubMed ID: 10365428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electromyographic correlates of learning an internal model of reaching movements.
    Thoroughman KA; Shadmehr R
    J Neurosci; 1999 Oct; 19(19):8573-88. PubMed ID: 10493757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.