These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19937202)

  • 1. Modeling and simulation of ion channels and action potentials in taste receptor cells.
    Chen P; Liu XD; Zhang W; Zhou J; Wang P; Yang W; Luo J
    Sci China C Life Sci; 2009 Nov; 52(11):1036-47. PubMed ID: 19937202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane properties and cell ultrastructure of taste receptor cells in Necturus lingual slices.
    Bigiani A; Kim DJ; Roper SD
    J Neurophysiol; 1996 May; 75(5):1944-56. PubMed ID: 8734593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of electrophysiologically distinct cell subpopulations in Necturus taste buds.
    Bigiani A; Roper SD
    J Gen Physiol; 1993 Jul; 102(1):143-70. PubMed ID: 8397275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ tight-seal recordings of taste substance-elicited action currents and voltage-gated Ba currents from single taste bud cells in the peeled epithelium of mouse tongue.
    Furue H; Yoshii K
    Brain Res; 1997 Nov; 776(1-2):133-9. PubMed ID: 9439805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amiloride-sensitive channels in type I fungiform taste cells in mouse.
    Vandenbeuch A; Clapp TR; Kinnamon SC
    BMC Neurosci; 2008 Jan; 9():1. PubMed ID: 18171468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.
    Kimura K; Ohtubo Y; Tateno K; Takeuchi K; Kumazawa T; Yoshii K
    Eur J Neurosci; 2014 Jan; 39(1):24-34. PubMed ID: 24152110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiologically identified subpopulations of taste bud cells.
    Romanov RA; Kolesnikov SS
    Neurosci Lett; 2006 Mar; 395(3):249-54. PubMed ID: 16309836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated channels involved in taste responses and characterizing taste bud cells in mouse soft palates.
    Noguchi T; Ikeda Y; Miyajima M; Yoshii K
    Brain Res; 2003 Aug; 982(2):241-59. PubMed ID: 12915259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.
    Ma Z; Saung WT; Foskett JK
    J Neurophysiol; 2017 May; 117(5):1865-1876. PubMed ID: 28202574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells.
    Bigiani A; Cuoghi V
    J Neurophysiol; 2007 Oct; 98(4):2483-7. PubMed ID: 17686911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological characterization of a putative supporting cell isolated from the frog taste disk.
    Bigiani A; Sbarbati A; Osculati F; Pietra P
    J Neurosci; 1998 Jul; 18(14):5136-50. PubMed ID: 9651197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of potassium currents by the antiarrhythmic drug E4031 in rat taste receptor cells.
    Sun XD; Herness MS
    Neurosci Lett; 1996 Feb; 204(3):149-52. PubMed ID: 8938252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ciguatoxin 3C on voltage-gated Na+ and K+ currents in mouse taste cells.
    Ghiaroni V; Fuwa H; Inoue M; Sasaki M; Miyazaki K; Hirama M; Yasumoto T; Rossini GP; Scalera G; Bigiani A
    Chem Senses; 2006 Sep; 31(7):673-80. PubMed ID: 16868017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of voltage-gated potassium currents by gambierol in mouse taste cells.
    Ghiaroni V; Sasaki M; Fuwa H; Rossini GP; Scalera G; Yasumoto T; Pietra P; Bigiani A
    Toxicol Sci; 2005 May; 85(1):657-65. PubMed ID: 15689421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of electrophysiologically distinct subpopulations of rat taste cells.
    Akabas M; Dodd J; al-Awqati Q
    J Membr Biol; 1990 Mar; 114(1):71-8. PubMed ID: 2157018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of membrane excitability in taste cells of the mouse vallate papilla.
    Bigiani A; Cristiani R; Fieni F; Ghiaroni V; Bagnoli P; Pietra P
    J Neurosci; 2002 Jan; 22(2):493-504. PubMed ID: 11784795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why do taste cells generate action potentials?
    Vandenbeuch A; Kinnamon SC
    J Biol; 2009; 8(4):42. PubMed ID: 19439032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of A-type voltage-gated K
    Moribayashi T; Nakao Y; Ohtubo Y
    Cell Tissue Res; 2024 Jun; 396(3):353-369. PubMed ID: 38492001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated sodium channels in taste bud cells.
    Gao N; Lu M; Echeverri F; Laita B; Kalabat D; Williams ME; Hevezi P; Zlotnik A; Moyer BD
    BMC Neurosci; 2009 Mar; 10():20. PubMed ID: 19284629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.