BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19937204)

  • 1. The expression profile of genes in rice roots under low phosphorus stress.
    Li L; Qiu X; Li X; Wang S; Lian X
    Sci China C Life Sci; 2009 Nov; 52(11):1055-64. PubMed ID: 19937204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression profiles in rice roots under low phosphorus stress.
    Li L; Liu C; Lian X
    Plant Mol Biol; 2010 Mar; 72(4-5):423-32. PubMed ID: 19936943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).
    Deng QW; Luo XD; Chen YL; Zhou Y; Zhang FT; Hu BL; Xie JK
    Biol Res; 2018 Mar; 51(1):7. PubMed ID: 29544529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of rice root responses to potassium deficiency.
    Ma TL; Wu WH; Wang Y
    BMC Plant Biol; 2012 Sep; 12():161. PubMed ID: 22963580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies.
    Yang SY; Hao DL; Song ZZ; Yang GZ; Wang L; Su YH
    Gene; 2015 Jan; 555(2):305-17. PubMed ID: 25447912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.
    Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S
    Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.
    Tyagi W; Rai M
    Protoplasma; 2017 Mar; 254(2):725-736. PubMed ID: 27228993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron and callose homeostatic regulation in rice roots under low phosphorus.
    Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y
    BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase.
    Beatty PH; Shrawat AK; Carroll RT; Zhu T; Good AG
    Plant Biotechnol J; 2009 Aug; 7(6):562-76. PubMed ID: 19508275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice.
    Chang C; Hu Y; Sun S; Zhu Y; Ma G; Xu G
    J Exp Bot; 2009; 60(2):557-65. PubMed ID: 19047499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.
    Tian J; Wang C; Zhang Q; He X; Whelan J; Shou H
    J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes.
    Mo X; Zhang M; Liang C; Cai L; Tian J
    Plant Physiol Biochem; 2019 Jun; 139():697-706. PubMed ID: 31054472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth.
    Zhang YM; Yan YS; Wang LN; Yang K; Xiao N; Liu YF; Fu YP; Sun ZX; Fang RX; Chen XY
    Mol Plant; 2012 Jan; 5(1):63-72. PubMed ID: 21859960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation.
    Ai P; Sun S; Zhao J; Fan X; Xin W; Guo Q; Yu L; Shen Q; Wu P; Miller AJ; Xu G
    Plant J; 2009 Mar; 57(5):798-809. PubMed ID: 18980647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues.
    Chen JS; Lin SC; Chen CY; Hsieh YT; Pai PH; Chen LK; Lee S
    BMC Res Notes; 2014 Jan; 7():15. PubMed ID: 24398116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.