These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19937231)

  • 1. Effects of altered transport paths and intermediate movement goals on human grasp kinematics.
    Hesse C; Deubel H
    Exp Brain Res; 2010 Feb; 201(1):93-109. PubMed ID: 19937231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp.
    Karl JM; Whishaw IQ
    Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reach-to-grasp movement as a minimization process.
    Yang F; Feldman AG
    Exp Brain Res; 2010 Feb; 201(1):75-92. PubMed ID: 19771417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of stimulus color on the control of reaching-grasping movements.
    Gentilucci M; Benuzzi F; Bertolani L; Gangitano M
    Exp Brain Res; 2001 Mar; 137(1):36-44. PubMed ID: 11310170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of obstacles on grasp planning.
    Garzorz IT; Knorr AG; Gilster R; Deubel H
    Exp Brain Res; 2018 Oct; 236(10):2639-2648. PubMed ID: 29974146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping actions remap peripersonal space.
    Brozzoli C; Pavani F; Urquizar C; Cardinali L; Farnè A
    Neuroreport; 2009 Jul; 20(10):913-7. PubMed ID: 19512951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task.
    Seegelke C; Hughes CM; Schack T
    Exp Brain Res; 2011 Nov; 215(1):65-75. PubMed ID: 21938544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous action execution and observation optimise grasping actions.
    Ménoret M; Curie A; des Portes V; Nazir TA; Paulignan Y
    Exp Brain Res; 2013 Jun; 227(3):407-19. PubMed ID: 23615976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements.
    Flindall JW; Gonzalez CL
    J Neurophysiol; 2016 Nov; 116(5):2105-2113. PubMed ID: 27512020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements.
    Rand MK; Van Gemmert AW; Hossain AB; Shimansky YP; Stelmach GE
    Exp Brain Res; 2012 Jun; 219(2):293-304. PubMed ID: 22526948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manual asymmetries in grasp pre-shaping and transport-grasp coordination.
    Tretriluxana J; Gordon J; Winstein CJ
    Exp Brain Res; 2008 Jun; 188(2):305-15. PubMed ID: 18437369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements.
    Rand MK; Squire LM; Stelmach GE
    Exp Brain Res; 2006 Sep; 174(1):74-85. PubMed ID: 16565810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modulation of the motor resonance triggered by reach-to-grasp movements: No role of human physical similarity as conveyed by age.
    Marino BFM; Ricciardelli P
    Exp Brain Res; 2017 Jul; 235(7):2267-2286. PubMed ID: 28474093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping of Reach-to-Grasp Kinematics by Intentions: A Meta-Analysis.
    Egmose I; Køppe S
    J Mot Behav; 2018; 50(2):155-165. PubMed ID: 28644719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor control of downward object-transport movements with precision grip by object weight.
    Yamamoto S; Shiraki Y; Uehara S; Kushiro K
    Somatosens Mot Res; 2016 Jun; 33(2):130-6. PubMed ID: 27430351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.